A Unified Approach to Congestion Games and Two-Sided Markets

  • Heiner Ackermann
  • Paul W. Goldberg
  • Vahab S. Mirrokni
  • Heiko Röglin
  • Berthold Vöcking
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4858)

Abstract

Congestion games are a well-studied model for resource sharing among uncoordinated selfish agents. Usually, one assumes that the resources in a congestion game do not have any preferences over the players that can allocate them. In typical load balancing applications, however, different jobs can have different priorities, and jobs with higher priorities get, for example, larger shares of the processor time. We introduce a model in which each resource can assign priorities to the players and players with higher priorities can displace players with lower priorities. Our model does not only extend standard congestion games, but it can also be seen as a model of two-sided markets with ties. We prove that singleton congestion games with priorities are potential games, and we show that every player-specific singleton congestion game with priorities possesses a pure Nash equilibrium that can be found in polynomial time. Finally, we extend our results to matroid congestion games, in which the strategy space of each player consists of the bases of a matroid over the resources.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. In: Proc. of the 47th Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pp. 613–622 (2006)Google Scholar
  2. 2.
    Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 50–61. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: Proc. of the 45th Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pp. 295–304 (2004)Google Scholar
  4. 4.
    Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to nash equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proc. of the 36th Ann. ACM Symp. on Theory of Computing (STOC), pp. 604–612 (2004)Google Scholar
  6. 6.
    Fleiner, T.: A fixed-point approach to stable matchings and some applications. Mathematics of Operations Research 28(1), 103–126 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fleischer, L., Goemans, M., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for maximum general assignment problems. In: Proc. of the 16th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA), pp. 611–620 (2006)Google Scholar
  8. 8.
    Fotakis, D., Kontogiannis, S.C., Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.: The structure and complexity of Nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing Nash equilibria for scheduling on restricted parallel links. In: Proc. of the 36th Ann. ACM Symp. on Theory of Computing (STOC), pp. 613–622 (2004)Google Scholar
  10. 10.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathematical Monthly 69, 9–15 (1962)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goemans, M., Li, L., Mirrokni, V.S., Thottan, M.: Market sharing games applied to content distribution in ad-hoc networks. In: Proc. of the 5th ACM Int. Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 1020–1033 (2004)Google Scholar
  12. 12.
    Gusfield, D., Irving, R.: The stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989)MATHGoogle Scholar
  13. 13.
    Hoffman, C., Holroyd, A., Peres, Y.: A stable marriage of poisson and lebesgue. Annals of Probability 34(4), 1241–1272 (2006)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: A simple class of congestion games. In: Proc. of the 20th Nat. Conference on Artificial Intelligence (AAAI), pp. 489–494 (2005)Google Scholar
  15. 15.
    Iwama, K., Manlove, D., Miyazaki, S., Morita, Y.: Stable marriage with incomplete lists and ties. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Kelso, A., Crawford, V.: Job matchings, coalition formation, and gross substitute. Econometrica 50, 1483–1504 (1982)MATHCrossRefGoogle Scholar
  17. 17.
    Knuth, D.: Marriage Stables et leurs relations avec d’autres problèmes Combinatories. Les Presses de l’Université de Montréal (1976)Google Scholar
  18. 18.
    Kojima, F., Ünver, M.U.: Random paths to pairwise stability in many-to-many matching problems: a study on market equilibration. Int. Journal of Game Theory  (2006)Google Scholar
  19. 19.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behavior 13(1), 111–124 (1996)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Mirrokni, V.S.: Approximation Algorithms for Distributed and Selfish Agents. PhD thesis, Massachusetts Institute of Technology (2005)Google Scholar
  21. 21.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. Journal of Game Theory 2, 65–67 (1973)MATHCrossRefGoogle Scholar
  22. 22.
    Roth, A.E.: The evolution of the labor market for medical interns and residents: A case study in game theory. Journal of Political Economy 92, 991–1016 (1984)CrossRefGoogle Scholar
  23. 23.
    Roth, A.E., Sotomayor, M.A.O.: Two-sided Matching: A study in game-theoretic modeling and analysis. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Heiner Ackermann
    • 1
  • Paul W. Goldberg
    • 2
  • Vahab S. Mirrokni
    • 3
  • Heiko Röglin
    • 1
  • Berthold Vöcking
    • 1
  1. 1.Department of Computer Science, RWTH AachenGermany
  2. 2.Department of Computer Science, University of LiverpoolU.K.
  3. 3.Microsoft Research, Redmond, WAUSA

Personalised recommendations