Total Latency in Singleton Congestion Games

  • Martin Gairing
  • Florian Schoppmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4858)

Abstract

We provide a collection of new upper and lower bounds on the price of anarchy for singleton congestion games. In our study, we distinguish between restricted and unrestricted strategy sets, between weighted and unweighted player weights, and between linear and polynomial latency functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact Price of Anarchy for Polynomial Congestion Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 218–229. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The Price of Routing Unsplittable Flow. In: Proc. of 37th STOC, pp. 57–66 (2005)Google Scholar
  3. 3.
    Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight Bounds for Selfish and Greedy Load Balancing. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 311–322. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Christodoulou, G., Koutsoupias, E.: On The Price of Anarchy and Stability of Correlated Equilibria of Linear Congestion Games. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite Congestion Games. In: Proc. of 37th STOC, pp. 67–73 (2005)Google Scholar
  6. 6.
    Czumaj, A., Vöcking, B.: Tight Bounds for Worst-Case Equilibria. ACM Transactions on Algorithms 3(1) (2007) (Article No. 4)Google Scholar
  7. 7.
    Elsässer, R., Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: A Simple Graph-Theoretic Model for Selfish Restricted Scheduling. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 195–209. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing Nash Equilibria for Scheduling on Restricted Parallel Links. In: Proc. of 36th STOC, pp. 613–622 (2004)Google Scholar
  10. 10.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: The Price of Anarchy for Restricted Parallel Links. Parallel Processing Letters 16(1), 117–131 (2006)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash Equilibria in Discrete Routing Games with Convex Latency Functions. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 645–657. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Gairing, M., Monien, B., Tiemann, K.: Selfish Routing with Incomplete Information. In: Proc. of 17th SPAA, pp. 203–212 (2005)Google Scholar
  13. 13.
    Gairing, M., Monien, B., Tiemann, K.: Routing (Un-) Splittable Flow in Games with Player-Specific Linear Latency Functions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 501–512. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate Equilibria and Ball Fusion. Theory of Computing Systems 36(6), 683–693 (2003)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 99. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A New Model for Selfish Routing. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 547–558. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Milchtaich, I.: Congestion Games with Player-Specific Payoff Functions. Games and Economic Behavior 13(1), 111–124 (1996)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nash, J.F.: Non-Cooperative Games. Annals of Mathematics 54(2), 286–295 (1951)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International Journal of Game Theory 2, 65–67 (1973)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Roughgarden, T., Tardos, E.: How Bad Is Selfish Routing? Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Suri, S., Tóth, C.D., Zhou, Y.: Selfish Load Balancing and Atomic Congestion Games. In: Proc. of 16th SPAA, pp. 188–195 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Gairing
    • 1
  • Florian Schoppmann
    • 2
  1. 1.International Computer Science Institute, Berkeley, CAUSA
  2. 2.International Graduate School of Dynamic Intelligent Systems, University of Paderborn, PaderbornGermany

Personalised recommendations