PageRank as a Weak Tournament Solution

  • Felix Brandt
  • Felix Fischer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4858)


We observe that ranking systems—a theoretical framework for web page ranking and collaborative filtering introduced by Altman and Tennenholtz—and tournament solutions—a well-studied area of social choice theory—are strongly related. This relationship permits a mutual transfer of axioms and solution concepts. As a first step, we formally analyze a tournament solution that is based on Google’s PageRank algorithm and study its interrelationships with common tournament solutions. It turns out that the PageRank set is always contained in both the Schwartz set and the uncovered set, but may be disjoint from most other tournament solutions. While PageRank does not satisfy various standard properties from the tournament literature, it can be much more discriminatory than established tournament solutions.


Social Choice Dominance Relation Solution Concept Ranking System Social Choice Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N.: Ranking tournaments. SIAM Journal of Discrete Mathematics 20(1), 137–142 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Altman, A., Tennenholtz, M.: On the axiomatic foundations of ranking systems. In: Proc. of 19th IJCAI, pp. 917–922 (2005) (Professional Book Center)Google Scholar
  3. 3.
    Altman, A., Tennenholtz, M.: Ranking systems: The PageRank axioms. In: Proc. of 6th ACM-EC Conference, pp. 1–8. ACM Press, New York (2005)CrossRefGoogle Scholar
  4. 4.
    Boldi, P., Santini, M., Vigna, S.: A deeper investigation of PageRank as a function of the damping factor. In: Web Information Retrieval and Linear Algebra Algorithms, number 07071 in Dagstuhl Seminar Proceedings (2007)Google Scholar
  5. 5.
    Brandt, F., Fischer, F.: Computational aspects of covering in dominance graphs. In: Holte, R.C., Howe, A. (eds.) Proc. of 22nd AAAI Conference, pp. 694–699. AAAI Press, Stanford, California, USA (2007)Google Scholar
  6. 6.
    Brandt, F., Fischer, F., Harrenstein, P.: The computational complexity of choice sets. In: Samet, D. (ed.) Proc. of 11th TARK Conference, pp. 82–91. Presses Universitaires de Louvain (2007)Google Scholar
  7. 7.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks 30(1-7), 107–117 (1998)Google Scholar
  8. 8.
    Daniels, H.E.: Round-robin tournament scores. Biometrika 56(2), 295–299 (1969)CrossRefGoogle Scholar
  9. 9.
    Dutta, B., Laslier, J.-F.: Comparison functions and choice correspondences. Social Choice and Welfare 16(4), 513–532 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fey, M.: Choosing form a large tournament. Mimeographed, University of Rochester (2002)Google Scholar
  11. 11.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)zbMATHGoogle Scholar
  12. 12.
    Laslier, J.-F.: Tournament Solutions and Majority Voting. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  13. 13.
    Moon, J.W., Pullman, N.K.: On generalized tournament matrics. SIAM Review 12(3), 384–399 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Moulin, H.: Choosing from a tournament. Social Choice and Welfare 3, 271–291 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the Web. Technical Report 1999–66, Stanford University (1999)Google Scholar
  16. 16.
    Palacios-Huerta, I., Volij, O.: The measurement of intellectual influence. Econometrica 72(3), 963–977 (2004)zbMATHCrossRefGoogle Scholar
  17. 17.
    Peris, J.E., Subiza, B.: Condorcet choice correspondences for weak tournaments. Social Choice and Welfare 16(2), 217–231 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pretto, L.: A theoretical analysis of Google’s PageRank. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 131–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Slutzki, G., Volij, O.: Scoring of web pages and tournaments—axiomatizations. Social Choice and Welfare 26, 75–92 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Woeginger, G.J.: Banks winners in tournaments are difficult to recognize. Social Choice and Welfare 20, 523–528 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Felix Brandt
    • 1
  • Felix Fischer
    • 1
  1. 1.Institut für Informatik, Universität München, 80538 MünchenGermany

Personalised recommendations