Deterministic Communication in the Weak Sensor Model

  • Antonio Fernández Anta
  • Miguel A. Mosteiro
  • Christopher Thraves
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4878)

Abstract

In Sensor Networks, the lack of topology information and the availability of only one communication channel has led research work to the use of randomization to deal with collision of transmissions. However, the scarcest resource in this setting is the energy supply, and radio communication dominates the sensor node energy consumption. Hence, redundant trials of transmission as used in randomized protocols may be counter-effective. Additionally, most of the research work in Sensor Networks is either heuristic or includes unreallistic assumptions. Hence, provable results for many basic problems still remain to be given. In this paper, we study upper and lower bounds for deterministic communication primitives under the harsh constraints of sensor nodes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: Single round simulation in radio networks. Journal of Algorithms 13, 188–210 (1992)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization. Journal of Computer and System Sciences 45, 104–126 (1992)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bonis, A.D., Ga̧sieniec, L., Vaccaro, U.: Generalized framework for selectors with applications in optimal group testing. In: Proc. of 30th International Colloquium on Automata Languages and Programming (2003)Google Scholar
  4. 4.
    Chlebus, B., Ga̧sieniec, L., Lingas, A., Pagourtzis, A.: Oblivious gossiping in ad-hoc radio networks. In: Proc. of 5th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (2001)Google Scholar
  5. 5.
    Chlebus, B.S., Ga̧sieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broadcasting in unknown radio networks. Distributed Computing 15, 27–38 (2002)CrossRefGoogle Scholar
  6. 6.
    Chlebus, B.S., Ga̧sieniec, L., Östlin, A., Robson, J.M.: Deterministic radio broadcasting. In: Proc. of 27th International Colloquium on Automata Languages and Programming (2000)Google Scholar
  7. 7.
    Chrobak, M., Ga̧sieniec, L., Kowalski, D.: The wake-up problem in multi-hop radio networks. In: Proc. of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (2004)Google Scholar
  8. 8.
    Chrobak, M., Ga̧sieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio networks. In: Proc. of the 41st IEEE Annual Symp. on Foundation of Computer Science (2000)Google Scholar
  9. 9.
    Clementi, A., Monti, A., Silvestri, R.: Selective families, superimposed codes, and broadcasting on unknown radio networks. In: Proc. of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (2001)Google Scholar
  10. 10.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: Proc. of the 44th IEEE Annual Symp. on Foundation of Computer Science (2003)Google Scholar
  11. 11.
    Dyachkov, A., Rykov, V.: A survey of superimposed code theory. Problems Control and Inform. Theory 12 (1983)Google Scholar
  12. 12.
    Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Bootstrapping a hop-optimal network in the weak sensor model. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 827–838. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Farach-Colton, M., Mosteiro, M.A.: Initializing sensor networks of non-uniform density in the weak sensor model. In: Proc. of 10th International Workshop on Algorithms and Data Structures (to appear, 2007)Google Scholar
  14. 14.
    Farach-Colton, M., Mosteiro, M.A.: Sensor network gossiping or how to break the broadcast lower bound. Manuscript (2007)Google Scholar
  15. 15.
    Fejes-Tóth, L.: Über einen geometrischen Satz. Mathematische Zeitschrift 46, 83–85 (1940)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Oxford University Press, Oxford (1979)MATHGoogle Scholar
  17. 17.
    Indyk, P.: Explicit constructions of selectors and related combinatorial structures, with applications. In: Proc. of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (2002)Google Scholar
  18. 18.
    Komlòs, J., Greenberg, A.: An asymptotically nonadaptive algorithm for conflict resolution in multiple-access channels. IEEE Trans. Inf. Theory 31, 303–306 (1985)Google Scholar
  19. 19.
    Kowalski, D.R.: On selection problem in radio networks. In: Proceedings 24th Annual ACM Symposium on Principles of Distributed Computing (2005)Google Scholar
  20. 20.
    Kushilevitz, E., Mansour, Y.: An Ω(Dlog(N/D)) lower bound for broadcast in radio networks. SIAM Journal on Computing 27, 702–712 (1998)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Liu, D., Prabhakaran, M.: On randomized broadcasting and gossiping in radio networks. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 340–349. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Antonio Fernández Anta
    • 1
  • Miguel A. Mosteiro
    • 1
  • Christopher Thraves
    • 1
  1. 1.LADyR, GSyCUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations