Peer to Peer Multidimensional Overlays: Approximating Complex Structures

  • Olivier Beaumont
  • Anne-Marie Kermarrec
  • Étienne Rivière
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4878)


Peer to peer overlay networks have proven to be a good support for storing and retrieving data in a fully decentralized way. A sound approach is to structure them in such a way that they reflect the structure of the application. Peers represent objects of the application so that neighbours in the peer to peer network are objects having similar characteristics from the application’s point of view. Such structured peer to peer overlay networks provide a natural support for range queries. While some complex structures such as a Voronoï tessellation, where each peer is associated to a cell in the space, are clearly relevant to structure the objects, the associated cost to compute and maintain these structures is usually extremely high for dimensions larger than 2.

We argue that an approximation of a complex structure is enough to provide a native support of range queries. This stems from the fact that neighbours are important while the exact space partitioning associated to a given peer is not as crucial. In this paper, we present the design, analysis and evaluation of RayNet, a loosely structured Voronoï-based overlay network. RayNet organizes peers in an approximation of a Voronoï tessellation in a fully decentralized way. It relies on a Monte-Carlo algorithm to estimate the size of a cell and on an epidemic protocol to discover neighbours. In order to ensure efficient (polylogarithmic) routing, RayNet is inspired from the Kleinberg’s small world model where each peer gets connected to close neighbours (its approximate Voronoï neighbours in Raynet) and shortcuts, long range neighbours, implemented using an existing Kleinberg-like peer sampling.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arge, L., Eppstein, D., Goodrich, M.T.: Skip-webs: efficient distributed data structures for multi-dimensional data sets. In: PODC 2005, pp. 69–76 (2005)Google Scholar
  2. 2.
    Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load balancing and locality in range-queriable data structures. In: PODC 2004, pp. 115–124 (2004)Google Scholar
  3. 3.
    Barrière, L., Fraigniaud, P., Kranakis, E., Krizanc, D.: Efficient routing in networks with long range contacts. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 270–284. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Beaumont, O., Kermarrec, A.-M., Marchal, L., Rivière, É.: VoroNet: A scalable object network based on voronoi tessellations. In: IPDPS 2007 (March 2007)Google Scholar
  5. 5.
    Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal multicast. ACM Transactions on Computer Systems 17(2), 41–88 (1999)CrossRefGoogle Scholar
  6. 6.
    Boissonnat, J.-D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  7. 7.
    Bonnet, F., Kermarrec, A.-M., Raynal, M.: Small-world networks: From theoretical bounds to practical systems. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 315–328. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec, A.-M.: Lightweight probabilistic broadcast. ACM Transactions on Computer Systems 21(4), 341–374 (2003)CrossRefGoogle Scholar
  9. 9.
    Guerraoui, R., Handurukande, S.B., Huguenin, K., Kermarrec, A.-M., Fessant, F.L., Rivière, É.: Gosskip, an efficient, fault-tolerant and self organizing overlay using gossip-based construction and skip-lists principles. In: IEEE P2P, Cambridge, pp. 12–22. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  10. 10.
    Gupta, A., Sahin, O.D., Agrawal, D., Abbadi, A.E.: Meghdoot: content-based publish/subscribe over p2p networks. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 254–273. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Jelasity, M., Babaoglu, O.: T-man: Gossip-based overlay topology management. Engineering Self-Organising Systems 1(15) (2005)Google Scholar
  12. 12.
    Jelasity, M., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: The peer sampling service: experimental evaluation of unstructured gossip-based implementations. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 79–98. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Jelasity, M., Kermarrec, A.-M.: Ordered slicing of very large-scale overlay networks. In: IEEE P2P, Cambridge, pp. 117–124 (September 2006)Google Scholar
  14. 14.
    Jelasity, M., Montresor, A., Babaoglu, O.: Towards secure epidemics: Detection and removal of malicious peers in epidemic-style protocols. Technical Report UBLCS-2003-14, University of Bologna, Department of Computer Science, Bologna, Italy (November 2003)Google Scholar
  15. 15.
    Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Transactions on Computer Systems 23(3), 219–252 (2005)CrossRefGoogle Scholar
  16. 16.
    Jelasity, M., Montresor, A., Babaoglu, O.: The bootstrapping service. In: ICDCSW 2006: Proceedings of the 26th IEEE International ConferenceWorkshops on Distributed Computing Systems, Lisboa, Portugal, p. 11 (July 2006)Google Scholar
  17. 17.
    Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Proceedings of the 32nd ACM Symposium on Theory of Computing, Portland, OR, USA, pp. 163–170 (May 2000)Google Scholar
  18. 18.
    Knuth, D.E.: Seminumerical Algorithms. In: The Art of Computer Programming, vol. 2, Addison-Wesley, Reading, Massachusetts (1981)Google Scholar
  19. 19.
    Liebeherr, J., Nahas, M.: Application-layer multicast with delaunay triangulations. IEEE Journal on Selected Areas in Communications, Special Issue on Network Support for Multicast Communication 40(8), 1472–1488 (2002)Google Scholar
  20. 20.
    Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer overlay network schemes. In: IEEE Communications survey and tutorial (March 2004)Google Scholar
  21. 21.
    Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-peer networks. In: ICS 2002: the 16th international conference on Supercomputing, New York, pp. 84–95 (2002)Google Scholar
  22. 22.
    Merrer, E.L., Kermarrec, A.-M., Massoulié, L.: Peer to peer size estimation in large and dynamic networks: A comparative study. In: 15th IEEE HPDC, Paris, pp. 7–17 (June 2006)Google Scholar
  23. 23.
    Montresor, A., Jelasity, M., Babaoglu, O.: Chord on demand. In: IEEE P2P, Washington, pp. 87–94 (2005)Google Scholar
  24. 24.
    Rivière, É., Baldoni, R., Li, H., Pereira, J.: Compositional gossip: a conceptual architecture for designing gossip-based applications. ACM SIGOPS Operating Systems Review, special issue on Gossip-based Networking (October 2007)Google Scholar
  25. 25.
    Voulgaris, S.: Epidemic-Based Self-Organization in Peer-to-Peer Systems. PhD thesis, Vrije Universiteit, Amsterdam (November 2006)Google Scholar
  26. 26.
    Voulgaris, S., Rivière, É., Kermarrec, A.-M., van Steen, M.: Sub-2-sub: Self-organizing content-based publish and subscribe for dynamic and large scale collaborative networks. In: IPTPS, Santa Barbara (February 2006)Google Scholar
  27. 27.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Olivier Beaumont
    • 1
  • Anne-Marie Kermarrec
    • 2
  • Étienne Rivière
    • 2
    • 3
  1. 1.LaBRI/INRIA Futurs, BordeauxFrance
  2. 2.INRIA Rennes Bretagne AtlantiqueFrance
  3. 3.IRISA/Université de Rennes 1France

Personalised recommendations