Advertisement

DLPKH – Distributed Logical Public-Key Hierarchy

  • Rakesh Bobba
  • Himanshu Khurana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4812)

Abstract

Decentralized group key management schemes for supporting secure group communication systems have been studied in the two flavors of contributory key agreement and decentralized key distribution. However, the primary focus has been on the former because the latter have been criticized for additional overheads of establishing secure channels and for the possibility of weak keys produced by the generating entity. In this work we develop a novel decentralized key distribution that uses public-key trees to eliminate the overheads of establishing secure channels and employs a practical approach of partial contribution to minimize the possibility of weak keys. The result is a simple and secure scheme whose performance is significantly better than previous schemes that involve contribution or distribution.

Keywords

Group key management key agreement decentralized key distribution logical key hierarchy public-key trees 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, Y., Kim, Y., Nita-Rotaru, C., Tsudik, G.: On the performance of group key agreement protocols. ACM Trans. Inf. Syst. Secur. 7(3), 457–488 (2004)CrossRefGoogle Scholar
  2. 2.
    Bresson, E., Catalano, D.: Constant round authenticated group key agreement via distributed computation. In: Public Key Cryptography, pp. 115–129 (2004)Google Scholar
  3. 3.
    Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system (extended abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Dutta, R., Barua, R.: Dynamic group key agreement in tree-based setting. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 101–112. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Inoue, D., Kuroda, M.: Fdlkh: Fully decentralized key management scheme on logical key hierarchy. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 339–354. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Kim, Y., Perrig, A., Tsudik, G.: Simple and fault-tolerant key agreement for dynamic collaborative groups. In: ACM Conference on Computer and Communications Security, pp. 235–244 (2000)Google Scholar
  8. 8.
    Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Trans. Inf. Syst. Secur. 7(1), 60–96 (2004)CrossRefGoogle Scholar
  9. 9.
    Rafaeli, S., Hutchison, D.: A survey of key management for secure group communication. ACM Comput. Surv. 35(3), 309–329 (2003)CrossRefGoogle Scholar
  10. 10.
    Rodeh, O., Birman, K.P., Dolev, D.: Using avl trees for fault-tolerant group key management. Int. J. Inf. Sec. 1(2), 84–99 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Setia, S., Koussih, S., Jajodia, S., Harder, E.: Kronos: A scalable group re-keying approach for secure multicast. In: SP 2000: Proceedings of the 2000 IEEE Symposium on Security and Privacy, p. 215. IEEE Computer Society, Washington, DC (2000)CrossRefGoogle Scholar
  12. 12.
    Sherman, A.T., McGrew, D.A.: Key establishment in large dynamic groups using one-way function trees. IEEE Trans. Software Eng. 29(5), 444–458 (2003)CrossRefGoogle Scholar
  13. 13.
    Steer, D.G., Strawczynski, L., Diffie, W., Wiener, M.: A secure audio teleconference system. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 520–528. Springer, Heidelberg (1990)Google Scholar
  14. 14.
    Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Trans. Parallel Distrib. Syst. 11(8), 769–780 (2000)CrossRefGoogle Scholar
  15. 15.
    Wong, C.K., Gouda, M.G., Lam, S.S.: Secure group communications using key graphs. IEEE/ACM Trans. Netw. 8(1), 16–30 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rakesh Bobba
    • 1
  • Himanshu Khurana
    • 1
  1. 1.University of Illinois at Urbana-Champaign 

Personalised recommendations