Advertisement

Traffic by Small Teams of Molecular Motors

  • Melanie J. I. Müller
  • Janina Beeg
  • Rumiana Dimova
  • Stefan Klumpp
  • Reinhard Lipowsky

Summary

Molecular motors transport various cargos along cytoskeletal filaments, analogous to trucks on roads. In contrast to vehicles, however, molecular motors do not work alone but in small teams. We describe a simple model for the transport of a cargo by one team of motors and by two teams of motors, which walk into opposite directions. The cooperation of one team of motors generates long-range transport, which we observed experimentally in vitro. Transport by two teams of motors leads to a variety of bidirectional motility behaviour and to dynamic instabilities reminiscent of spontaneous symmetry breaking. We also discuss how cargo transport by teams of motors allows the cell to generate robust long-range bidirectional transport.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Howard J (2001) Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (Mass.). Google Scholar
  2. 2.
    Lipowsky R, Klumpp S (2005) Physica A 352:53–112. CrossRefGoogle Scholar
  3. 3.
    Lipowsky R, Klumpp S, Nieuwenhuizen TM (2001) Phys. Rev. Lett. 87:108101. CrossRefGoogle Scholar
  4. 4.
    Parmeggiani A, Franosch T, Frey E (2003) Phys. Rev. Lett. 90:086601. CrossRefGoogle Scholar
  5. 5.
    Goldstein LSB, Yang Z (2000) Annu. Rev. Neurosci. 23:39–71. CrossRefGoogle Scholar
  6. 6.
    Lane J, Allan V (1998) Biochim. Biophys. Acta 1376:27–55. Google Scholar
  7. 7.
    Gross SP (2004) Phys. Biol. 1:R1–R11. CrossRefGoogle Scholar
  8. 8.
    Welte MA (2004) Curr. Biol. 14:R525–R537. CrossRefGoogle Scholar
  9. 9.
    Klumpp S, Nieuwenhuizen TM, Lipowsky R (2005) Biophys. J. 88:3118–3132. CrossRefGoogle Scholar
  10. 10.
    Müller MJI, Klumpp S, Lipowsky R (2005) J. Phys.: Condens. Matter 17:S3839–S3850. CrossRefGoogle Scholar
  11. 11.
    Habermann A, Schroer TA, Griffiths G, Burkhardt JK (2001) J. Cell. Sci. 114:229–240. Google Scholar
  12. 12.
    Gross SP, Vershinin M, Shubeita GT (2007) Curr. Biol. 17:R478–R486. CrossRefGoogle Scholar
  13. 13.
    Klumpp S, Lipowsky R (2005) Proc. Natl. Acad. Sci. USA 102:17284–17289. CrossRefGoogle Scholar
  14. 14.
    Müller MJI, Klumpp S, Lipowsky R (2008) Proc. Natl. Acad. Sci. USA 105:4609–4614. CrossRefGoogle Scholar
  15. 15.
    Beeg J, Klumpp S, Dimova R, Serral Gracià R, Unger E, Lipowsky R (2008) Biophys. J. 94:532–541. CrossRefGoogle Scholar
  16. 16.
    Schnitzer MJ, Visscher K, Block SM (2000) Nature Cell Biol. 2:718–723. CrossRefGoogle Scholar
  17. 17.
    Carter NJ, Cross RA (2005) Nature 435:308–312. CrossRefGoogle Scholar
  18. 18.
    Block SM, Goldstein LSB, Schnapp BJ (1990) Nature 348:345–352. CrossRefGoogle Scholar
  19. 19.
    Coy DL, Wagenbach M, Howard J (1999) J. Biol. Chem. 274:3667–3671. CrossRefGoogle Scholar
  20. 20.
    Seitz A, Surrey T (2006) EMBO J. 25:267–277. CrossRefGoogle Scholar
  21. 21.
    Böhm KJ, Stracke R, Mühlig P, Unger E (2001) Nanotechnology 12:238–244. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Melanie J. I. Müller
    • 1
    • 2
  • Janina Beeg
    • 1
    • 2
  • Rumiana Dimova
    • 1
    • 2
  • Stefan Klumpp
    • 1
    • 2
  • Reinhard Lipowsky
    • 1
    • 2
  1. 1.Science Park GolmMax Planck Institute of Colloids and InterfacesPotsdamGermany
  2. 2.Center for Theoretical Biological PhysicsUniversity of California San DiegoLa JollaUSA

Personalised recommendations