Empirical Data for Pedestrian Flow Through Bottlenecks

  • Armin Seyfried
  • Bernhard Steffen
  • Andreas Winkens
  • Tobias Rupprecht
  • Maik Boltes
  • Wolfram Klingsch


The number of models for pedestrian dynamics has grown in the past years, but the experimental data to discriminate between these models is still to a large extent uncertain and contradictory. To enhance the data base and to resolve some discrepancies discussed in the literature over one hundred years we studied the pedestrian flow through bottlenecks by an experiment performed under laboratory conditions. The time development of quantities like individual velocities, densities, individual time gaps in bottlenecks of different width and the jam density in front of the bottleneck is presented. The comparison of the results with experimental data of other authors supports a continuous increase of the capacity with the bottleneck width. The most interesting results of this data collection is that maximal flow values measured at bottlenecks can exceed the maxima of empirical fundamental diagrams significantly. Thus either our knowledge about empirical fundamental diagrams is incomplete or the common assumptions regarding the connection between the fundamental diagram and the flow through bottlenecks need a thorough revision.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Dieckmann. Die Feuersicherheit in Theatern. Jung (München), 1911. in German. Google Scholar
  2. 2.
    Herbert Fischer. Über die Leistungsfähigkeit von Türen, Gängen und Treppen bei ruhigem, dichtem Verkehr. Dissertation, Technische Hochschule Dresden, 1933. in German. Google Scholar
  3. 3.
    V. M. Predtechenskii and A. I. Milinskii. Planing for foot traffic flow in buildings. Amerind Publishing, New Dehli, 1978. Translation of: Proekttirovanie Zhdanii s Uchetom Organizatsii Dvizheniya Lyuddskikh Potokov, Stroiizdat Publishers, Moscow, 1969. Google Scholar
  4. 4.
    J. J. Fruin. Pedestrian Planning and Design. Elevator World, New York, 1971. Google Scholar
  5. 5.
    U. Weidmann. Transporttechnik der Fußgänger. Schriftenreihe des IVT 90, ETH Zürich, 1993. Google Scholar
  6. 6.
    H. E. Nelson and F. W. Mowrer. Emergency movement. In P. J. DiNenno, editor, SFPE Handbook of Fire Protection Engineering, chapter 14, page 367. National Fire Protection Association, Quincy MA, third edition, 2002. Google Scholar
  7. 7.
    S. P. Hoogendoorn, W. Daamen, and P. H. L. Bovy. Microscopic pedestrian traffic data collection and analysis by walking experiments: Behaviour at bottlenecks. In E. R. Galea, editor, Pedestrian and Evacuation Dynamics ’03, pages 89–100. CMS Press, London, 2003. Google Scholar
  8. 8.
    S. P. Hoogendoorn and W. Daamen. Pedestrian behavior at bottlenecks. Transportation Science, 39 2:0147–0159, 2005. CrossRefGoogle Scholar
  9. 9.
    A. Mintz. Non-adaptive group behaviour. The Journal of abnormal and social psychology, 46:150–159, 1951. CrossRefGoogle Scholar
  10. 10.
    A. Seyfried, T. Rupprecht, O. Passon, B. Steffen, W. Klingsch, and M. Boltes. New insights into pedestrian flow through bottlenecks. arXiv:physics/0702004, 2007.
  11. 11.
    T. Rupprecht. Untersuchung zur Erfassung der Basisdaten von Personenströmen. diploma thesis, Bergische Universität Wuppertal, 2006. www.fz-juelich.de/jsc/JSCpeople/seyfried/teaching.
  12. 12.
    A. Winkens. Analyse der lokalen Dichte in Fußgängerströmen vor Engstellen. diploma thesis, Bergische Universität Wuppertal, 2007. www.fz-juelich.de/jsc/JSCpeople/seyfried/teaching.
  13. 13.
    Censys3D™. Point Grey Research Inc., www.ptgrey.com.
  14. 14.
    F. James. MINUIT - Function Minimization and Error Analysis, 1994. CERN Program Library entry D506. Google Scholar
  15. 15.
    M. Mori and H. Tsukaguchi. A new method for evaluation of level of service in pedestrian facilities. Transp. Res. Part A, 21A(3):223–234, 1987. CrossRefGoogle Scholar
  16. 16.
    B. D. Hankin and R. A. Wright. Passenger flow in subways. Operational Research Quarterly, 9:81–88, 1958. CrossRefGoogle Scholar
  17. 17.
    H. C. Muir, D. M. Bottomley, and C. Marrison. Effects of motivation and cabin configuration on emergency aircraft evacuation behavior and rates of egress. The International Journal of Aviation Psychology, 6(1):57–77, 1996. CrossRefGoogle Scholar
  18. 18.
    R. Nagai, M. Fukamachi, and T. Nagatani. Evacuation of crawlers and walkers from corridor through an exit. Physica A, 367:449–460, 2006. CrossRefGoogle Scholar
  19. 19.
    K. Müller. Die Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Gebäuden. dissertation, Technische Hochschule Magdeburg, 1981. Google Scholar
  20. 20.
    T. Kretz, A. Grünebohm, and M. Schreckenberg. Experimental study of pedestrian flow through a bottleneck. J. Stat. Mech., page P10014, 2006. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Armin Seyfried
    • 1
  • Bernhard Steffen
    • 1
  • Andreas Winkens
    • 2
  • Tobias Rupprecht
    • 2
  • Maik Boltes
    • 1
  • Wolfram Klingsch
    • 2
  1. 1.Jülich Supercomputing CentreResearch Centre Jülich, 52425 JülichGermany
  2. 2.Institute for Building Material Technology and Fire Safety ScienceUniversity of WuppertalGermany

Personalised recommendations