A Region Thesaurus Approach for High-Level Concept Detection in the Natural Disaster Domain

  • Evaggelos Spyrou
  • Yannis Avrithis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4816)


This paper presents an approach on high-level feature detection using a region thesaurus. MPEG-7 features are locally extracted from segmented regions and for a large set of images. A hierarchical clustering approach is applied and a relatively small number of region types is selected. This set of region types defines the region thesaurus. Using this thesaurus, low-level features are mapped to high-level concepts as model vectors. This representation is then used to train support vector machine-based feature detectors. As a next step, latent semantic analysis is applied on the model vectors, to further improve the analysis performance. High-level concepts detected derive from the natural disaster domain.


Region Type Latent Semantic Analysis Model Vector Coarse Segmentation Hierarchical Cluster Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IBM: MARVEL Multimedia Analysis and Retrieval System. IBM Research White paper (2005)Google Scholar
  2. 2.
    Souvannavong, F., Mérialdo, B., Huet, B.: Region-based video content indexing and retrieval. In: CBMI 2005. Fourth International Workshop on Content-Based Multimedia Indexing, June 21-23, 2005, Riga, Latvia (2005)Google Scholar
  3. 3.
    Saux, B., Amato, G.: Image classifiers for scene analysis. In: International Conference on Computer Vision and Graphics (2004)Google Scholar
  4. 4.
    Voisine, N., Dasiopoulou, S., Mezaris, V., Spyrou, E., Athanasiadis, T., Kompatsiaris, I., Avrithis, Y., Strintzis, M.G.: Knowledge-assisted video analysis using a genetic algorithm. In: WIAMIS 2005. 6th International Workshop on Image Analysis for Multimedia Interactive Services (April 13-15, 2005)Google Scholar
  5. 5.
    Boujemaa, N., Fleuret, F., Gouet, V., Sahbi, H.: Visual content extraction for automatic semantic annotation of video news. In: IS&T/SPIE Conference on Storage and Retrieval Methods and Applications for Multimedia, part of Electronic Imaging symposium (2004)Google Scholar
  6. 6.
    Snoek, C.G., Worring, M., Koelma, D.C., Smeulders, A.W.: Learned lexicon-driven interactive video retrieval. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Chang, S.F., Sikora, T., Puri, A.: Overview of the mpeg-7 standard. IEEE trans. on Circuits and Systems for Video Technology 11(6), 688–695 (2001)CrossRefGoogle Scholar
  8. 8.
    MPEG-7: Visual experimentation model (XM) version 10.0. ISO/IEC/ JTC1/SC29/WG11, Doc. N4062 (2001)Google Scholar
  9. 9.
    Avrithis, Y., Doulamis, A., Doulamis, N., Kollias, S.: A stochastic framework for optimal key frame extraction from mpeg video databases (1999)Google Scholar
  10. 10.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, Chichester (2000)Google Scholar
  11. 11.
    Deerwester, S., Dumais, S., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the Society for Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  12. 12.
    Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: MIR 2006. Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, pp. 321–330. ACM Press, New York, NY, USA (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Evaggelos Spyrou
    • 1
  • Yannis Avrithis
    • 1
  1. 1.Image, Video and Multimedia Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 157 80 AthensGreece

Personalised recommendations