Advertisement

Post Embedding Problem Is Not Primitive Recursive, with Applications to Channel Systems

  • Pierre Chambart
  • Philippe Schnoebelen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4855)

Abstract

We introduce PEP, the Post Embedding Problem, a variant of PCP where one compares strings with the subword relation, and PEP reg, a further variant where solutions are constrained and must belong to a given regular language. PEP reg is decidable but not primitive recursive. This entails the decidability of reachability for unidirectional systems with one reliable and one lossy channel.

Keywords

Post correspondence problem Lossy channel systems Higman’s Lemma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Baier, C., Purushothaman Iyer, S., Jonsson, B.: Simulating perfect channels with probabilistic lossy channels. Information and Computation 197(1–2), 22–40 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Deneux, J., Ouaknine, J., Worrell, J.: Decidability and complexity results for timed automata via channel machines. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1089–1101. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Information and Computation 127(2), 91–101 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Amadio, R., Meyssonnier, Ch.: On decidability of the control reachability problem in the asynchronous π-calculus. Nordic Journal of Computing 9(2), 70–101 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chambard, P., Schnoebelen, Ph.: Post embedding problem is not primitive recursive, with applications to channel systems. Research Report LSV-07-28, Lab. Specification and Verification, ENS de Cachan, Cachan, France (September 2007)Google Scholar
  6. 6.
    Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. In: Proc. LICS 2006, pp. 17–26. IEEE Comp. Soc. Press, Los Alamitos (2006)Google Scholar
  7. 7.
    Finkel, A.: Decidability of the termination problem for completely specificied protocols. Distributed Computing 7(3), 129–135 (1994)CrossRefGoogle Scholar
  8. 8.
    Gabelaia, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Non-primitive recursive decidability of products of modal logics with expanding domains. Annals of Pure and Applied Logic 142(1–3), 245–268 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Halava, V., Hirvensalo, M., de Wolf, R.: Marked PCP is decidable. Theoretical Computer Science 255(1–2), 193–204 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Konev, B., Wolter, F., Zakharyaschev, M.: Temporal logics over transitive states. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, pp. 182–203. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Lasota, S., Walukiewicz, I.: Alternating timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 250–265. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal Logic over finite words. Logical Methods in Comp. Science 3(1), 1–27 (2007)MathSciNetGoogle Scholar
  13. 13.
    Ruohonen, K.: On some variants of Post’s correspondence problem. Acta Informatica 4(19), 357–367 (1983)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Schnoebelen, P.: Bisimulation and other undecidable equivalences for lossy channel systems. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 385–399. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. Information Processing Letters 83(5), 251–261 (2002)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Pierre Chambart
    • 1
  • Philippe Schnoebelen
    • 1
  1. 1.LSV, ENS Cachan, CNRS, 61, av. Pdt. Wilson, F-94230 CachanFrance

Personalised recommendations