Probabilistic and Topological Semantics for Timed Automata

  • Christel Baier
  • Nathalie Bertrand
  • Patricia Bouyer
  • Thomas Brihaye
  • Marcus Größer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4855)

Abstract

Like most models used in model-checking, timed automata are an idealized mathematical model used for representing systems with strong timing requirements. In such mathematical models, properties can be violated, due to unlikely (sequences of) events. We propose two new semantics for the satisfaction of LTL formulas, one based on probabilities, and the other one based on topology, to rule out these sequences. We prove that the two semantics are equivalent and lead to a PSPACE-Complete model-checking problem for LTL over finite executions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) Automata, Languages and Programming. LNCS, vol. 510, pp. 115–126. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Dill, D.: Verifying automata specifications of probabilistic real-time systems. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) Real-Time: Theory in Practice. LNCS, vol. 600, pp. 28–44. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Comp. Sci. 126(2), 183–235 (1994)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Alur, R., La Torre, S., Madhusudan, P.: Perturbed timed automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, Th., Größer, M.: Probabilistic and topological semantics for timed automata. Research Report LSV–07–26, LSV, ENS de Cachan, France (2007)Google Scholar
  6. 6.
    Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of timed automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and implementability of timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 118–133. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: From timed models to timed implementations. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 296–310. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Henzinger, Th.A., Majumdar, R., Raskin, J.-F.: A classification of symbolic transition systems. ACM Transactions on Computational Logic 6(1), 1–32 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Henzinger, Th.A., Raskin, J.-F.: Robust undecidability of timed and hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 145–159. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Munkres, J.R.: Topology, 2nd edn. Prentice-Hall, Englewood Cliffs (2000)MATHGoogle Scholar
  13. 13.
    Oxtoby, J.C.: The Banach-Mazur game and Banach category theorem. Annals of Mathematical Studies 39, 159–163 (1957)MathSciNetMATHGoogle Scholar
  14. 14.
    Pnueli, A.: The temporal logic of programs. In: Proc. 18th Ann. Symp. Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE Comp. Soc. Press, Los Alamitos (1977)CrossRefGoogle Scholar
  15. 15.
    Puri, A.: Dynamical properties of timed automata. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Sproston, J.: Model checking for probabilistic timed systems. In: Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 189–229. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Varacca, D., Völzer, H.: Temporal logics and model checking for fairly correct systems. In: Varacca, D. (ed.) Proc. 21st Ann. Symp. Logic in Computer Science (LICS 2006), pp. 389–398. IEEE Comp. Soc. Press, Los Alamitos (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christel Baier
    • 1
  • Nathalie Bertrand
    • 1
  • Patricia Bouyer
    • 2
    • 3
  • Thomas Brihaye
    • 2
  • Marcus Größer
    • 1
  1. 1.Technische Universität DresdenGermany
  2. 2.LSV - CNRS & ENS CachanFrance
  3. 3.Oxford UniversityEngland

Personalised recommendations