Computation of QRS Vector of ECG Signal for Observation of It’s Clinical Significance

  • S. Mitra
  • M. Mitra
  • B. B. Chaudhuri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)


An automated approach for computation of the frontal plane QRS vector and an important observation of its clinical significance is described in this paper. Frontal plane QRS vector is computed from the six frontal plane leads ( Standard leads I, II, III , AVR, AVL and AVF). The R-R interval of each ECG wave is detected by square derivative technique. The baseline or isoelectric level of every ECG wave is determined. After that the net positive or net negative deflection (NQD) of QRS complex is detected. Net positive or net negative deflection in any lead is obtained by subtracting the smaller deflection (+ve or –ve) from the larger deflection (-ve or +ve). An algorithm is developed for computation of the exact angle,amplitude and direction of the frontal plane QRS vector from maximum and minimum NQD. In the present work, the PTB diagnostic ECG database of normal and Myocardial Infarction (MI) subjects is used for computation of the QRS vector. An interesting clinical observation that, the rotation of QRS axis for MI data may significantly detect the region of the infarcted cardiac wall, is reported in this paper.


ECG software QRS vector NQD baseline 


  1. 1.
    Hildebrand, F.B.: Introduction To Numerical Analysis, TMH edn., pp. 82–84. Tata Mcgraw-Hill Publishing Company LtdGoogle Scholar
  2. 2.
    Maglaveras, N., Stamkopoulos, T., Diamantaras, K., Pappas, C., Strintzis, M.: ECG pattern recognition and classification using non-linear transformations and neural networks: a review. International Journal of Medical Informatics 82, 191–208 (1998)CrossRefGoogle Scholar
  3. 3.
    Kawahito, S., Kitahata, H., Tanaka, K., Nozaki, J., Oshita, S.: Dynamic QRS-complex and ST-segment monitoring by continuous vectorcardiography during carotid endarterectomy. British Journal of Anaesthesia 90(2), 142–147 (2003)CrossRefGoogle Scholar
  4. 4.
    Aidu, E.A.I., Trunov, V.G., Titomir, L.I., Szathmary, V., Tyšler, M.: Noninvasive Location of Acute Ischemic Lesion in the Heart Ventricles Using a Few-lead System: Study on a Realistic Mathematical Model. Measurement Science Rreview 3(2), 33–36 (2003)Google Scholar
  5. 5.
    Friensen, G.M., Jannett, T.C., Jadallah, M.A., Yates, S.L,, Quint, S.R, Nagle, H.T: A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. BME-37, 85–89 (1990)Google Scholar
  6. 6.
    Pahlm, O., Sommo, L.: Software QRS detection in ambulatory monitoring – A review. Med. Biomed. Eng. Comput., 22, 289–297 (1984)CrossRefGoogle Scholar
  7. 7.
    Coast, D.A., Stem, R.M., Cano, G.G., Briller, S.A.: An approach to cardiac arrhythmia analysis using hidden Markov models. IEEE Trans. Biomed. Eng. BME-37, 826–836 (1990)Google Scholar
  8. 8.
    Trahanias, P.E., Skordalakis, E.: Bottom-up approach to ECG pattern recognition problem. Med. Biomed. Eng. Comput. 27, 221–229 (1989)CrossRefGoogle Scholar
  9. 9.
    Trahanias, P.E., Skordalakis, E.: Syntactic pattern recognition of the ECG. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-12, 648–657 (1990)Google Scholar
  10. 10.
    Trahanias, P.E.: An approach to QRS complex detection using mathematical morphology. IEEE Trans. Biomed. Eng. BME-40, 201–205 (1993)Google Scholar
  11. 11.
    Dinh, H.A., Kumar, D.K., Pah, N.D., Burton, P.: Wavelets for QRS detection. Australas Phys. Eng. Sci. Med. 24, 207–211 (2001)CrossRefGoogle Scholar
  12. 12.
    Kadamb, S., Murray, R., Boudreaux-Bartels, G.F.: Wavelet transform-based QRS complex detector. IEEE Trans Biomed Eng. 46, 838–848 (1999)CrossRefGoogle Scholar
  13. 13.
    Yu, X., Xu, X.: QRS detection based on neural-network. Journal of Biomed. Eng. 17, 59–62 (2000)MathSciNetGoogle Scholar
  14. 14.
    Chung, E.K.: Pocket Guide to ECG Diagonosis, pp. 17–21. Oxford University Press, Mumbai (1997)Google Scholar
  15. 15.
    Mitra, S., Mitra, M.: Detection of QRS Complex of ECG Signals from Square-Derivative Curve. AMSE journal (Advances in Modeling), France, modeling C 65(2), 15–28 (2004)Google Scholar
  16. 16.
    Schamroth, L.: An Introduction to Electrocardiography, 7th edn., pp. 142–155. Blackwell ScienceGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • S. Mitra
    • 1
  • M. Mitra
    • 2
  • B. B. Chaudhuri
    • 1
  1. 1.Computer Vision and Pattern Recognition Unit,Indian Statistical Institute, KolkataIndia
  2. 2.Department of Applied Physics, Faculty of Technology, University of Calcutta, KolkataIndia

Personalised recommendations