Cunning Ant System for Quadratic Assignment Problem with Local Search and Parallelization

  • Shigeyoshi Tsutsui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)


The previously proposed cunning ant system (cAS), a variant of the ACO algorithm, worked well on the TSP and the results showed that the cAS could be one of the most promising ACO algorithms. In this paper, we apply cAS to solving QAP. We focus our main attention on the effects of applying local search and parallelization of the cAS. Results show promising performance of cAS on QAP.


Local Search Convergence Process Quadratic Assignment Problem Island Model Solution Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tsutsui, S.: cas: Ant colony optimization with cunning ants. In: Proc. of the 9th Int. Conf. on Parallel Problem Solving from Nature (PPSN IX), pp. 162–171 (2006)Google Scholar
  2. 2.
    Tsutsui, S.: Ant colony optimization with cunning ant. Transactions of the Japanese Society for Artificial Intelligence 22(1), 29–36 (2007)CrossRefGoogle Scholar
  3. 3.
    Stützle, T., Hoos, H.: Max-min ant system. Future Generation Computer Systems 16(9), 889–914 (2000)CrossRefGoogle Scholar
  4. 4.
    Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the ACM 23, 555–565 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Massachusetts (2004)zbMATHGoogle Scholar
  6. 6.
    Tsutsui, S., Liu, L.: Solving quadratic assignment problems with the cunning ant system. In: Proc. of the 2007 CEC (to appear)Google Scholar
  7. 7.
    Acan, A.: An external memory implementation in ant colony optimization. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 73–84. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Acan, A.: An external partial permutations memory for ant colony optimization. In: Proc. of the 5th European Conf. on Evolutionary Computation in Combinatorial Optimization, pp. 1–11 (2005)Google Scholar
  9. 9.
    Wiesemann, W., Stützle, T.: An experimental study for the the quadratic assignment problem. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 179–190. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    QAPLIB-A Quadratic Assignment Problem Library,
  11. 11.
    Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel Computing 17, 443–455 (1991)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Taillard, E.: Robust tabu search implementation,
  13. 13.
    Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithm. Kluwer Academic Publishers, Boston (2000)Google Scholar
  14. 14.
    Tsutsui, S., Fujimoto, Y., Ghosh, A.: Forking gas: Gas with search space division schemes. Evolutionary Computation 5(1), 61–80 (1997)Google Scholar
  15. 15.
    Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Parallel ant colony optimization for the traveling salesman problems. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 224–234. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Sun Microsystems, Inc.: Java 2 Platform, Standard Edition, v1.4.2 at API Specification,
  17. 17.
    Apache Software Foundation: Apache HTTP server project,

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Shigeyoshi Tsutsui
    • 1
  1. 1.Hannan University, Matsubara, Osaka 580-8502Japan

Personalised recommendations