Enhanced Quantum Evolutionary Algorithms for Difficult Knapsack Problems

  • C. Patvardhan
  • Apurva Narayan
  • A. Srivastav
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)

Abstract

Difficult knapsack problems are problems that are expressly designed to be difficult. In this paper, enhanced Quantum Evolutionary Algorithms are designed and their application is presented for the solution of the DKPs. The algorithms are general enough and can be used with advantage in other subset selection problems.

Keywords

Evolutionary Algorithms Quantum knapsack 

References

  1. 1.
    Martello, S., Toth, P.: A new algorithm for the 0-1 knapsack problem. Management Science 34, 633–644 (1988)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. J. Wiley, Chichester (1990)MATHGoogle Scholar
  3. 3.
    Martello, S., Toth, P.: Upper bounds and algorithms for hard 0-1 knapsack problems. Operations Research 45, 768–778 (1997)MATHMathSciNetGoogle Scholar
  4. 4.
    der Heide, F.M.a.: A polynomial linear search algorithm for the n-dimensional knapsack problem. Journal of the ACM 31, 668–676 (1984)MATHCrossRefGoogle Scholar
  5. 5.
    Pisinger, D.: An expanding-core algorithm for the exact 0-1 knapsack problem. European Journal of Operational Research 87, 175–187 (1995)MATHCrossRefGoogle Scholar
  6. 6.
    Pisinger, D.: Where are the Hard Knapsack Problems, Technical Report, 2003-8, DIKU, University of Copenhagen, DenmarkGoogle Scholar
  7. 7.
    Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0-1 knapsack problem. Management Science 45, 414–424 (1999)Google Scholar
  8. 8.
    Han, K.H., Kim, J.H.: Quantum-Inspired Evolutionary Algorithm for a Class of Combinatorial Optimization. IEEE Transactions on Evolutionary Computation 6(6), 580–593 (2002)CrossRefGoogle Scholar
  9. 9.
    Han, K.H., Kim, J.H.: Quantum-Inspired Evolutionary Algorithms with a New Termination Criterion, Hε Gate, and Two-Phase Scheme. IEEE Transactions on Evolutionary Computation 8(2), 156–169 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • C. Patvardhan
    • 1
  • Apurva Narayan
    • 1
  • A. Srivastav
    • 2
  1. 1.Faculty of Engineering, Dayalbagh Educational Institute, Agra – 282005 
  2. 2.Mathematisches Seminar, Christian-Albrechts-Universitat Zu Kiel, KielGermany

Personalised recommendations