Fuzzy Ordering Relation and Fuzzy Poset

  • Branimir Šešelja
  • Andreja Tepavčević
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4815)

Abstract

Connections between (weakly) reflexive, antisymmetric and transitive lattice-valued fuzzy relations on a nonempty set X (fuzzy ordering relations on X) and fuzzy subsets of a crisp poset on X (fuzzy posets) are established and various properties of cuts of such structures are proved.

A representation of fuzzy sets by cuts corresponding to atoms in atomically generated lattices has also been given.

AMS Mathematics Subject Classification (1991): 04A72.

Keywords and Phrases

Lattice valued fuzzy ordering relation fuzzy weak ordering relation fuzzy poset cutworthy approach 

References

  1. 1.
    Bělohlávek, R.: Fuzzy Relational Systems. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  2. 2.
    Bodenhofer, U.: A New Approach to Fuzzy Orderings. Tatra Mt. Math. Publ. 16(Part I), 21–29 (1999)MATHMathSciNetGoogle Scholar
  3. 3.
    Bodenhofer, U.: Representations and constructions of similarity based fuzzy orderings. Fuzzy Sets and Systems 137, 113–136 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bodenhofer, U., De Baets, B., Fodor, J.: A compendium of fuzzy weak orders: Representations and constructions. Fuzzy Sets and Systems 158, 811–829 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gorjanac-Ranitovic, M., Tepavčević, A.: General form of lattice-valued fuzzy sets under the cutworthy approach. Fuzzy Sets and Systems 158, 1213–1216 (2007)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Davey, B.A., Pristley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1992)Google Scholar
  7. 7.
    Janis, V., Šeselja, B., Tepavčević, A.: Non-standard cut classification of fuzzy sets. Information Sciences 177, 161–169 (2007)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic. Prentice Hall P T R, New Jersey (1995)MATHGoogle Scholar
  9. 9.
    Ovchinnikov, S.V.: Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets an Systems 40(1), 107–126 (1991)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ovchinnikov, S.V.: Well-graded spaces of valued sets. Discrete Mathematics 245, 217–233 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Šeselja, B., Tepavčević, A.: Completion of Ordered Structures by Cuts of Fuzzy Sets, An Overview. Fuzzy Sets and Systems 136, 1–19 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Šeselja, B., Tepavčević, A.: Representing Ordered Structures by Fuzzy Sets. An Overview, Fuzzy Sets and Systems 136, 21–39 (2003)CrossRefGoogle Scholar
  13. 13.
    Šeselja, B.: Fuzzy Covering Relation and Ordering: An Abstract Approach, Computational Intelligence. In: Reusch, B. (ed.) Theory and Applications, pp. 295–300. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Tepavčević, A., Trajkovski, G.: L-fuzzy lattices: an introduction. Fuzzy Sets and Systems 123, 209–216 (2001)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Branimir Šešelja
    • 1
  • Andreja Tepavčević
    • 1
  1. 1.Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 4, 21000 Novi SadSerbia

Personalised recommendations