New Formulae for Efficient Elliptic Curve Arithmetic

  • Huseyin Hisil
  • Gary Carter
  • Ed Dawson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4859)

Abstract

This paper is on efficient implementation techniques of Elliptic Curve Cryptography. In particular, we improve timings for Jacobi-quartic (3M+4S) and Hessian (7M+1S or 3M+6S) doubling operations. We provide a faster mixed-addition (7M+3S+1d) on modified Jacobi-quartic coordinates. We introduce tripling formulae for Jacobi-quartic (4M+11S+2d), Jacobi-intersection (4M+10S+5d or 7M+7S+3d), Edwards (9M+4S) and Hessian (8M+6S+1d) forms. We show that Hessian tripling costs 6M+4C+1d for Hessian curves defined over a field of characteristic 3. We discuss an alternative way of choosing the base point in successive squaring based scalar multiplication algorithms. Using this technique, we improve the latest mixed-addition formulae for Jacobi-intersection (10M+2S+1d), Hessian (5M+6S) and Edwards (9M+1S+ 1d+4a) forms. We discuss the significance of these optimizations for elliptic curve cryptography.

Keywords

Elliptic curve efficient point multiplication doubling tripling DBNS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Smart, N.P.: The Hessian form of an elliptic curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 118–125. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Joye, M., Quisquater, J.J.: Hessian elliptic curves and side-channel attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 402–410. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Liardet, P.Y., Smart, N.P.: Preventing SPA/DPA in ECC systems using the Jacobi form. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 391–401. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC. LNCS, vol. 2643, pp. 34–42. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Doche, C., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny decompositions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 191–206. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Bernstein, D.J., Lange, T.: Explicit-formulas database (2007), Accessible through: http://hyperelliptic.org/EFD
  8. 8.
    Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: Optimizing double-base elliptic-curve single-scalar multiplication. In: INDOCRYPT. LNCS, Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Negre, C.: Scalar multiplication on elliptic curves defined over fields of small odd characteristic. In: Maitra, S., Madhavan, C.E.V., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 389–402. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Kim, K.H., Kim, S.I., Choe, J.S.: New fast algorithms for arithmetic on elliptic curves over fields of characteristic three. Cryptology ePrint Archive, Report, 2007/179 (2007), http://eprint.iacr.org/
  11. 11.
    Smart, N.P., Westwood, E.J.: Point multiplication on ordinary elliptic curves over fields of characteristic three. Applicable Algebra in Engineering, Communication and Computing 13(6), 485–497 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Meloni, N.: Fast and secure elliptic curve scalar multiplication over prime fields using special addition chains. Cryptology ePrint Archive, Report, 2006/216 (2006), http://eprint.iacr.org/
  14. 14.
    Avanzi, R.M., Dimitrov, V., Doche, C., Sica, F.: Extending scalar multiplication using double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 130–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Doche, C., Imbert, L.: Extended double-base number system with applications to elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Edwards, H.M.: A normal form for elliptic curves. Bulletin of the AMS 44(3), 393–422 (2007)MATHCrossRefGoogle Scholar
  17. 17.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. Cryptology ePrint Archive, Report, 2007/286 (2007), http://eprint.iacr.org/
  18. 18.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Duquesne, S.: Improving the arithmetic of elliptic curves in the Jacobi model. Inf. Process. Lett. 104(3), 101–105 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Huseyin Hisil
    • 1
  • Gary Carter
    • 1
  • Ed Dawson
    • 1
  1. 1.Information Security Institute, Queensland University of Technology 

Personalised recommendations