Migration Policies for Location-Centric Data Storage in Mobile Ad-Hoc Networks

  • Dominique Dudkowski
  • Pedro José Marrón
  • Kurt Rothermel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4864)


Location-centric data storage is a fundamental paradigm for data management in wireless ad-hoc networks. It guarantees that data is stored at network nodes near specific geometric reference locations in the region where the network is deployed. In mobile ad-hoc networks, maintaining spatial proximity between data and its associated location requires explicit migration mechanisms in order to “keep the data in place”. In this paper we propose comprehensive policies for data migration that effectively maintain the spatial coherence of data given the particular characteristics of mobile ad-hoc networks. Using extensive simulations we show how the proposed policies outperform related migration approaches over a wide range of system parameter settings, in particular, node density, network dynamics, and migratable data size.


Node Density Target Node Spatial Coherence Distribute Hash Table Data Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Araújo, F., Rodrigues, L., Kaiser, J., Liu, C., Mitidieri, C.: CHR: A distributed hash table for wireless ad hoc networks. In: ICDCSW 2005. Proc. 25th IEEE Int’l Conf. Distr. Comp. Syst. Workshops, Columbus, OH, USA, pp. 407–413 (June 2005)Google Scholar
  2. 2.
    Chen, K., Xue, Y., Shah, S.H., Nahrstedt, K.: Understanding bandwidth-delay product in mobile ad hoc networks. Comp. Comm. 27(10), 923–934 (2004)CrossRefGoogle Scholar
  3. 3.
    Dudkowski, D., Marrón, P.J., Rothermel, K.: Efficient algorithms for probabilistic spatial queries in mobile ad hoc networks. In: COMSWARE 2006. Proc. 1st Int’l Conf. Comm. Syst. Software and Middleware, New Delhi, India (January 2006)Google Scholar
  4. 4.
    Dudkowski, D., Marrón, P.J., Rothermel, K.: An efficient resilience mechanism for data centric storage in mobile ad noc networks. In: MDM 2006. Proc. 7th Int’l Conf. on Mobile Data Management, Nara, Japan (May 2006)Google Scholar
  5. 5.
    Gerharz, M., de Waal, C., Frank, M., Martini, P.: Link stability in mobile wireless ad hoc networks. In: LCN 2002. Proc. 27th Ann. IEEE Conf. on Local Comp. Networks, Tampa, FL, USA, pp. 30–39 (November 2002)Google Scholar
  6. 6.
    Ghose, A., Grossklags, J., Chuang, J.: Resilient data-centric storage in wireless ad-hoc sensor networks. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.) MDM 2003. LNCS, vol. 2574, pp. 45–62. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In: MobiCom 2000. Proc. 6th Ann. Int’l Conf. Mobile Comp. and Networking, Boston, MA, USA, pp. 243–254 (August 2000)Google Scholar
  8. 8.
    Kieß, W., Füßler, H., Widmer, J., Mauve, M.: Hierarchical location service for mobile ad-hoc networks. Mobile Comp. and Comm. Rev. 1(2), 47–58 (2004)CrossRefGoogle Scholar
  9. 9.
    Landsiegel, O., Götz, S., Wehrle, K.: Towards scalable mobility in distributed hash tables. In: P2P 2006. Proc. 6th IEEE Int’l Conf. Peer-to-Peer Comp, Cambridge, UK, pp. 203–209 (September 2006)Google Scholar
  10. 10.
    Rao, A., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information. In: MobiCom 2003. Proc. 9th Ann. Int’l Conf. Mobile Comp. and Networking, San Diego, California, USA, pp. 96–108 (September 2003)Google Scholar
  11. 11.
    Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R., Yin, L., Yu, F.: Data-centric storage in sensornets with GHT, a geographic hash table. Mobile Networks and Applications 8(4), 427–442 (2003)CrossRefGoogle Scholar
  12. 12.
    Seada, K., Helmy, A.: Rendezvous regions: A scalable architecture for service location and data-centric storage in large-scale wireless networks. In: IPDPS 2004. Proc. 18th Int’l Parallel and Distr. Processing Symp, p. 218 (2004)Google Scholar
  13. 13.
    Tei, K., Sommer, C., Fukazawa, Y., Honiden, S., Garoche, P.-L.: Adaptive Geographically Bound Mobile Agents. In: Cao, J., Stojmenovic, I., Jia, X., Das, S.K. (eds.) MSN 2006. LNCS, vol. 4325, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Wu, X.: VPDS: Virtual home region based distributed position service in mobile ad hoc networks. In: ICDCS 2005. Proc. 25th IEEE Int’l Conf. Distr. Comp. Syst, Columbus, Ohio, USA, pp. 113–122 (June 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Dominique Dudkowski
    • 1
  • Pedro José Marrón
    • 2
  • Kurt Rothermel
    • 1
  1. 1.University of Stuttgart, 70569 StuttgartGermany
  2. 2.University of Bonn, 53117 BonnGermany

Personalised recommendations