ProtocolDB: Storing Scientific Protocols with a Domain Ontology

  • Michel Kinsy
  • Zoé Lacroix
  • Christophe Legendre
  • Piotr Wlodarczyk
  • Nadia Yacoubi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4832)


This paper addresses a systemic problem in science: although datasets collected through scientific protocols may be properly stored, the protocol itself is often only recorded on paper or stored electronically as the script developed to implement the protocol. Once the scientist who has implemented the protocol leaves the laboratory, this record may be lost. Collected datasets without a description of the process used to produce them become meaningless; furthermore, the experiment designed to produce the data is not reproducible. In this paper we present the ProtocolDB system that aims at assisting scientists in the process of (1) designing and implementing scientific protocols, (2) storing, querying, and transforming scientific protocols, and (3) reasoning about collected experimental data (data provenance).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartlett, J.C., Toms, E.G.: Developing a Protocol for Bioinformatics Analysis: An Integrated Information Behaviour and Task Analysis Approach. Journal of the American Society for Information Science and Technology 56(5), 469–482 (2005)CrossRefGoogle Scholar
  2. 2.
    Cohen-Boulakia, S., Biton, O., Davidson, S.: Querying Biologically Relevant Provenance information in Scientific Workflow Systems with Zoom*UserViews. In: Proc. 33rd International Conference on Very Large Data Bases (demonstration paper), Vienna, Austria, pp. 1366–1369 (2007)Google Scholar
  3. 3.
    Kinsy, M., Lacroix, Z.: Storing Efficiently Bioinformatics Workflows. In: IEEE 7th International Symposium on Bionformatics and Bioengineering, Boston, MA (2007)Google Scholar
  4. 4.
    Kwasnikowska, N., Lacroix, Z., Chen, Y.: Modeling and Storing Scientific Protocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops. LNCS, vol. 4277, pp. 730–739. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Lacroix, Z., Legendre, C.: Analysis of a Scientific Protocol: Selecting Suitable Resources. In: Proc. First IEEE International Workshop on Service Oriented Technologies for Biological Databases and Tools, Salt Lake City, UT, July 9-13, pp. 130–137 (2007)Google Scholar
  6. 6.
    Lacroix, Z., Legendre, C., Raschid, L., Snyder, B.: BIPASS: BioInformatics Pipelines Alternative Splicing Services. Nucleic Acids Research 35, W292–W296 (2007) (Web Services Issue)CrossRefGoogle Scholar
  7. 7.
    Lacroix, Z., Raschid, L., Eckman, B.: Techniques for Optimization of Queries on Integrated Biological Resources. Journal of Bioinformatics and Computational Biology 2(2), 375–411 (2004)CrossRefGoogle Scholar
  8. 8.
    Lawson, A.E.: The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education 25(11), 1387–1408 (2003)CrossRefGoogle Scholar
  9. 9.
    Lord, P.W., Alper, P., Wroe, C., Goble, C.A.: Feta: A light-weight architecture for user oriented semantic service discovery. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 17–31. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE intelligent systems 16(2), 46–53 (2001)CrossRefGoogle Scholar
  11. 11.
    McPhillips, T.M., Bowers, S., Ludäscher, B.: Collection-oriented scientific workflows for integrating and analyzing biological data. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 248–263. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Néron, B., Tufféry, P., Letondal, C.: Mobyle: a Web portal framework for bioinformatics analyses. In: Network Tools and Applications in Biology (poster), Naples, Italy (2005)Google Scholar
  13. 13.
    Oinn, T., Greenwood, M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble, C., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M.R., Senger, M., Stevens, R., Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow environment for the life sciences. Concurrency and Computation: Practice and Experience 18(10), 1067–1100 (2006)CrossRefGoogle Scholar
  14. 14.
    Oinn, T.M., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, R.M., Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: A tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)CrossRefGoogle Scholar
  15. 15.
    Stevens, R., Goble, C., Baker, P., Brass, A.: A Classification of Tasks in Bioinformatics. Bioinformatics 17(2), 180–188 (2001)CrossRefGoogle Scholar
  16. 16.
    Tufféry, P., Lacroix, Z., Ménager, H.: Semantic Map of Services for Structural Bioinformatics. In: Proc. of the 18th International Conference on Scientific and Statistical Database Management, Washington DC, pp. 217–224 (2006)Google Scholar
  17. 17.
    Yacoubi, N., Lacroix, Z.: Resolving Scientific Service Interoperability With Schema Mapping. In: Proc. IEEE 7th International Symposium on Bionformatics and Bioengineering, Boston, MA, pp. 14–17 (2007)Google Scholar
  18. 18.
    Yacoubi, N., Lacroix, Z., Vidal, M.-E., Ruckhaus, E.: Deductive Web Services: an Ontology-driven Approach to Service Composition and Data Integration. In: Proc. International on Semantic Web and Web Semantics, Vilamoura, Portugal, pp. 29–30 (2007)Google Scholar
  19. 19.
    Zamboulis, L., Martin, N., Poulovassilis, A.: Bioinformatics Service Reconciliation By Heterogeneous Schema Transformation. In: Data Integration in the Life Sciences. LNCS, vol. 4544, pp. 89–104. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Michel Kinsy
    • 1
  • Zoé Lacroix
    • 1
  • Christophe Legendre
    • 1
  • Piotr Wlodarczyk
    • 1
  • Nadia Yacoubi
    • 1
  1. 1.Scientific Data Management Laboratory, Arizona State University, Tempe AZ 85287-5706USA

Personalised recommendations