GRASPER

(A Framework for Graph Constraint Satisfaction Problems)
  • Ruben Viegas
  • Francisco Azevedo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4874)

Abstract

In this paper we present GRASPER, a graph constraint solver, based on set constraints, that shows promising results when compared to an existing similar solver at this early stage of development.

Keywords

Constraint Programming Graphs Sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)Google Scholar
  2. 2.
    Marriot, K., Stuckey, P.: Programming with Constraints: An introduction. MIT Press, Cambridge (1998)Google Scholar
  3. 3.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)Google Scholar
  4. 4.
    Puget, J.-F.: Pecos: A high level constraint programming language. In: Proc. Spicis (1992)Google Scholar
  5. 5.
    Dooms, G., Deville, Y., Dupont, P.: CP(Graph): Intoducing a graph computation domain in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 211–225. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Dooms, G.: The CP(Graph) Computation Domain in Constraint Programming. PhD thesis, Faculté des Sciences Appliquées, Université Catholique de Louvain (2006)Google Scholar
  7. 7.
    Diestel, R. (ed.): Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2005)MATHGoogle Scholar
  8. 8.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)Google Scholar
  9. 9.
    Xu, J.: Theory and Application of Graphs. In: Network Theory and Applications, vol. 10. Kluwer Academic, Dordrecht (2003)MATHGoogle Scholar
  10. 10.
    Azevedo, F.: Cardinal: A finite sets constraint solver. Constraints journal 12(1), 93–129 (2007)MATHCrossRefGoogle Scholar
  11. 11.
    Correia, M., Barahona, P., Azevedo, F.: CaSPER: A programming environment for development and integration of constraint solvers. In: Azevedo, et al. (eds.) BeyondFD 2005. Proc. of the 1st Int. Workshop on Constraint Programming Beyond Finite Integer Domains, pp. 59–73 (2005)Google Scholar
  12. 12.
    Musser, D., Stepanov, A.: Generic programming. In: Gianni, P. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 358, pp. 13–25. Springer, Heidelberg (1989)Google Scholar
  13. 13.
    Gervet, C.: Interval propagation to reason about sets: Definition and implementation of a practical language. Constraints journal 1(3), 191–244 (1997)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Viegas, R., Azevedo, F.: GRASPER: a framework for graph CSPs. In: ModRef 2007. 6th Int. Workshop On Constraint Modelling and Reformulation (2007)Google Scholar
  15. 15.
    Mathews, C., Van Holde, K.: Biochemistry, 2nd edn. Benj./Cumm. (1996)Google Scholar
  16. 16.
    Attwood, T., Parry-Smith, D.: Introduction to bioinformatics. Prent. Hall, Englewood Cliffs (1999)Google Scholar
  17. 17.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  18. 18.
    Sellmann, M.: Cost-based filtering for shorter path constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 694–708. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ruben Viegas
    • 1
  • Francisco Azevedo
    • 1
  1. 1.CENTRIA, Departamento de Informática, Universidade Nova de Lisboa 

Personalised recommendations