Advertisement

The Halt Condition in Genetic Programming

  • José Neves
  • José Machado
  • Cesar Analide
  • António Abelha
  • Luis Brito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4874)

Abstract

In this paper we address the role of divergence and convergence in creative processes, and argue about the need to consider them in Computational Creativity research in the Genetic or Evolutionary Programming paradigm, being one´s goal the problem of the Halt Condition in Genetic Programming. Here the candidate solutions are seen as evolutionary logic programs or theories, being the test whether a solution is optimal based on a measure of the quality-of-information carried out by those logical theories or programs. Furthermore, we present Conceptual Blending Theory as being a promising framework for implementing convergence methods within creativity programs, in terms of the logic programming framework.

Keywords

Computational Creativity Genetic or Evolutionary Programming Extended Logic Programming Quality-of-Information Conceptual Blending Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jennings, N.R., Faratin, P., Johnson, M.J., Norman, T.J., Brien, O., Wiegand, M.E.: Journal of Cooperative Information Systems 5(2-3), 105–130 (1996)Google Scholar
  2. 2.
    Angeline, P.J.: Parse Trees. In: Bäck, T., et al. (eds.) Evolutionary Computation 1: Basic Algorithms And Operators, Institute of Physics Publishing, Bristol (2000)Google Scholar
  3. 3.
    Rudolph, G.: Convergence Analysis of Canonical Genetic Algorithms. IEEE Transactions on Neural Networks, Special Issue on Evolutionary Computation 5(1), 96–101 (1994)CrossRefGoogle Scholar
  4. 4.
    Teller, A.: Evolving programmers: The co-evolution of intelligent recombination operators. In: Kinnear, K., Angeline, P. (eds.) Advances in Genetic Programming 2, MIT Press, Cambridge (1996)Google Scholar
  5. 5.
    Analide, C., Novais, P., Machado, J., Neves, J.: Quality of Knowledge in Virtual Entities. In: Encyclopedia of Communities of Practice in Information and Knowledge Management, pp. 436–442. Idea Group Inc., USA (2006)Google Scholar
  6. 6.
    Mendes, R., Kennedy, J., Neves, J.: Avoiding the Pitfalls of Local Optima: How topologies can Save the Day. In: ISAP 2003. Proceedings of the 12th Conference on Intelligent Systems Application to Power Systems, IEEE Computer Society, Lemnos, Greece (2003)Google Scholar
  7. 7.
    Neves, J.C.: A Logic Interpreter to Handle Time and Negation in Logic Data Bases. In: Proceedings of ACM 1984 Annual Conference, San Francisco, USA (October 24-27, 1984)Google Scholar
  8. 8.
    Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. In: Gabbay, D., Hogger, C., Robinson, J. (eds.) Handbook of logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)Google Scholar
  9. 9.
    Kowalski, R.: The logical way to be artificially intelligent. In: Toni, F., Torroni, P. (eds.) Proceedings of CLIMA VI. LNCS (LNAI), Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Turner, M., Fauconnier, G.: Conceptual Integration and Formal Expression. Johnson, M.: Journal of Metaphor and Symbolic Activity 10(3) (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • José Neves
    • 1
  • José Machado
    • 1
  • Cesar Analide
    • 1
  • António Abelha
    • 1
  • Luis Brito
    • 1
  1. 1.Department of Informatics, University of Minho, BragaPortugal

Personalised recommendations