On the Use of Rough Sets for User Authentication Via Keystroke Dynamics

  • Kenneth Revett
  • Sérgio Tenreiro de Magalhães
  • Henrique M. D. Santos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4874)


Keystroke dynamics is a behavioral biometric that is based on how a user enters their login details. In this study, a set of eight attributes were extracted during the course of entering login details. This collection of attributes was used to form a reference signature (a biometrics identification record) for subsequent authentication requests. The algorithm for the authentication step entails transforming the attributes into a discretised form based on the amino acid alphabet. A set of bioinformatics based algorithms are then used to perform the actual authentication test. In addition, the use of rough sets was employed in this study to determine if subsets of attributes were more important in the classification (authentication) than others. Lastly, the results of this study indicate that the error rate is less than 1% in the majority of the cases.


behavioral biometrics keystroke dynamics multiple sequence alignment reducts rough sets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gaines, R., et al.: Authentication by keystroke timing: Some preliminary results. Rand Report R-256-NSF, Rand Corp. (1980)Google Scholar
  2. 2.
    Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Pawlak, Z.: Rough sets – Theoretical aspects of reasoning about data. Kluwer, Dordrecht (1991)zbMATHGoogle Scholar
  4. 4.
    Magalhães, S.T., Santos, H.D.: An improved statistical keystroke dynamics algorithm. In: Proceedings of the IADIS MCCSIS 2005 (2005)Google Scholar
  5. 5.
    Magalhães, S.T., Revett, K.: Password Secured Sites – Stepping Forward with Keystroke Dynamics. In: International Conference on Next Generation Web Service Practises, Seoul, Korea (2005)Google Scholar
  6. 6.
    Joyce, R., Gupta, G.: Identity authorization based on keystroke latencies. Communications of the ACM 33(2), 168–176 (1990)CrossRefGoogle Scholar
  7. 7.
    Monrose, F., Rubin, A.D.: Authentication via Keystroke Dynamics. In: Proceedings of the Fourth ACM Conference on Computer and Communication Security, Zurich, Switzerland (1997)Google Scholar
  8. 8.
    Monrose, F., Rubin, A.D.: Keystroke Dynamics as a Biometric for Authentication. Future Generation Computing Systems (FGCS) Journal: Security on the Web (2000)Google Scholar
  9. 9.
    Hussien, B., Bleha, S., McLaren, R.: An application of fuzzy algorithms in a computer access security system. Pattern Recognition Letters 9, 39–43 (1989)CrossRefGoogle Scholar
  10. 10.
    de Ru, W.G., Eloff, J.: Enhanced Password Authentication through Fuzzy Logic. IEEE Expert 12(6), 38–45 (1997)CrossRefGoogle Scholar
  11. 11.
    Obaidat, M.S., Sadoun, B.: A Simulation Evaluation Study of neural network techniques to Computer User Identification. Information Sciences 102, 239–258 (1997)CrossRefGoogle Scholar
  12. 12.
    de Oliveira, M.V.S., Kinto, E., Hernandez, E.D.M., de Carvalho, T.C.: User Authentication Based on Human Typing Patterns with Artificial Neural Networks and Support Vector Machines. In: SBC 2005 (2005)Google Scholar
  13. 13.
    Sung, K.S., Cho, S.: GA SVM Wrapper Ensemble for Keystroke Dynamics Authentication. In: International Conference on Biometrics, Hong Kong, pp. 654–660 (2006)Google Scholar
  14. 14.
    Bergadano, F., Gunetti, D., Picardi, C.: User authentication through keystroke dynamics. ACM Transactions on Information and System Security 5(4), 367–397 (2002)CrossRefGoogle Scholar
  15. 15.
    Revett, K.: On the Use of Multiple Sequence Alignment for User Authentication via Keystroke Dynamics. In: International Conference on Global eSecurity (ICGeS), April 16-18, 2007, University of East London, pp. 112-120 (2007)Google Scholar
  16. 16.
    Revett, K., Magalhaes, S., Santos, H.: Developing a Keystroke Dynamics Based Agent Using Rough Sets. In: The 2005 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology Workshop on Rough Sets and Soft Computing in Intelligent Agents and Web Technology, Compiegne, France, September 19-22, 2005, pp. 56–61 (2005)Google Scholar
  17. 17.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Mol. Biol. 48, 443–453 (1970)CrossRefGoogle Scholar
  18. 18.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 95–197 (1981)CrossRefGoogle Scholar
  19. 19.
    Slezak, D.: Approximate Entropy Reducts. Fundamenta Informaticae (2002)Google Scholar
  20. 20.
    Bazan, J., Szczuka, M.: The Rough Set Exploration System. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Heidelberg (2005) Google Scholar
  21. 21.
    Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problems. In: Studies in Fuzziness and Soft Computing, vol. 56, pp. 49–88. Physica-Verlag, Heidelberg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kenneth Revett
    • 1
  • Sérgio Tenreiro de Magalhães
    • 2
  • Henrique M. D. Santos
    • 2
  1. 1.University of Westminster, Harrow School of Computer Science, London, HA1 3TPUK
  2. 2.Universidade do Minho, Department of Information Systems, Campus de Azurem, 4800-058 GuimaraesPortugal

Personalised recommendations