Forward-Secure Key Evolution in Wireless Sensor Networks

  • Marek Klonowski
  • Mirosław Kutyłowski
  • Michał Ren
  • Katarzyna Rybarczyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4856)


We consider a key distribution scheme for securing node-to-node communication in sensor networks. While most schemes in use are based on random predistribution, we consider a system of dynamic pairwise keys based on design due to Ren, Tanmoy and Zhou. We design and analyze a variation of this scheme, in which capturing a node does not lead to security threats for the past communication.

Instead of bit-flipping, we use a cryptographic one-way function. While this immediately guarantees forward-security, it is not clear whether the pseudorandom transformation of the keys does not lead to subtle security risks due to a specific distribution of reachable keys, such as existence of small attractor subspaces. (This problem does not occur for the design of Ren, Tanmoy and Zhou.) We show, in a rigorous, mathematical way, that this is not the case: after a small number of steps probability distribution of keys leaves no room for potential attacks.


communication in sensor networks key management key distribution forward security directed random graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ren, M., Tanmoy, K.D., Zhou, J.: Diverging keys in wireless sensor networks. In: Katsikas, S.K., Lopez, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 3–540. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Carman, D.W., Kruus, P.S., Matt, B.J.: Constraints and approaches for distributed sensor network security. Technical Report 00-010, NAI Labs, Cryptographic Technologies Group Trusted Information Systems, NAI Labs, The Security Research Division Network Associates, Inc. 3060 Washington Road (Rt. 97) Glenwood, MD 21738-9745 (2000)Google Scholar
  3. 3.
    Tiri, K., Hwang, D., Hodjat, A., Lai, B., Yang, S., Schaumont, P., Verbauwhede, I.: Aes-based cryptographic and biometric security coprocessor ic in 0.18-um cmos resistant to side-channel power analysis attacks. In: 2005 Symposia on VLSI Technology and Circuits, pp. 216–219 (2005)Google Scholar
  4. 4.
    Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: CCS 2002: Proceedings of the 9th ACM conference on Computer and communications security, pp. 41–47. ACM Press, New York (2002)CrossRefGoogle Scholar
  5. 5.
    Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks. In: SP 2003: Proceedings of the 2003 IEEE Symposium on Security and Privacy, Washington, DC, USA, pp. 197–213. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  6. 6.
    Chan, H., Perrig, A.: Pike: Peer intermediaries for key establishment in sensor networks. In: Infocom 2005. The 24th Conference of the IEEE Communications Society (2005)Google Scholar
  7. 7.
    Anderson, R., Chan, H., Perrig, A.: Key infection: Smart trust for smart dust. In: ICNP 2004. Proceedings of IEEE International Conference on Network Protocols (2004)Google Scholar
  8. 8.
    Daemen, J., Rijmen, V.: Rijndael specification. NIST AES Algorithm (Rijndael) Information webpage (2001)Google Scholar
  9. 9.
    Hellman, M.E.: A cryptanalytic time-memory tradeoff. IEEE Trans. Inform. Theory 26, 401–406 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bollobás, B.: The diameter of random graphs. IEEE Trans. Inform. Theory 36, 285–288 (1990)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Bollobás, B.: Random Graphs. Academic Press, London (1985)zbMATHGoogle Scholar
  12. 12.
    Chung, F., Lu, L.: The diameter of sparse random graphs. Adv. in Appl. Math. 26(4), 257–279 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Aldous, D., Fill, J.A.: Reversible markov chains and random walks on graphs-chapter 9: A second look at general markov chainsGoogle Scholar
  14. 14.
    Nachmias, A., Peres, Y.: Critical random graphs: diameter and mixing time (2007)Google Scholar
  15. 15.
    Benjamini, I., Kozma, G., Wormald, N.: The mixing time of the giant component of a random graph (2006)Google Scholar
  16. 16.
    Montenegro, R., Tetali, P.: Mathematical aspects of mixing times in markov chains. Found. Trends Theor. Comput. Sci. 1(3), 237–354 (2006)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Jaworski, J., Smit, I.: On a random digraph. Annals of Discrete Mathathematics 33, 111–127 (1987)MathSciNetGoogle Scholar
  18. 18.
    Jaworski, J., Palka, Z.: Remarks on a general model of a random digraph. Ars Combinatoria 65, 135–144 (2002)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Marek Klonowski
    • 1
  • Mirosław Kutyłowski
    • 1
  • Michał Ren
    • 2
  • Katarzyna Rybarczyk
    • 2
  1. 1.Wrocław University of Technology 
  2. 2.Adam Mickiewicz University, PoznańPoland

Personalised recommendations