Records of Paleomagnetic Field Variations

  • Karl Fabian
  • Roman Leonhardt
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)


Earth Planet Natural Remanent Magnetization Paleomagnetic Data Isothermal Remanent Magnetization Virtual Geomagnetic Pole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken, M. J., Allsop, A. L., Bussell, G. D., and Winter, M. B. (1988). Determination of the intensity of the Earth’s magnetic field during archaeological times: reliability of the Thellier technique. Rev. Geophys., 26:3–12.CrossRefGoogle Scholar
  2. Amerigian, C. (1977). Measurement of the effect of particle size variation on the detrital remanent magnetization to anhysteretic remanent magnetization ratio in some abyssal sediments. Earth Planet. Sci. Lett., 36:434–442.CrossRefGoogle Scholar
  3. Bol’shakov, A. and Solodovnikov, G. (1981). Intensity of the geomagnetic field in the last 400 million years. Doklady Earth Sci. Sections, 260:24–27.Google Scholar
  4. Carlut, J. and Courtillot, V. (1998). How complex is the time-averaged geomagnetic field over the past 5 Myr? Geophys. J. Int., 134:527–544.CrossRefGoogle Scholar
  5. Channell, J. (1999). Geomagnetic paleointensity and directional secular variation at Ocean Drilling Program (ODP) Site 984 (Bjorn Drift) since 500 ka: Comparisons with ODP Site 983 (Gardar Drift). J. Geophys. Res., 104(B10):22937–22951.CrossRefGoogle Scholar
  6. Channell, J., Valet, J.-P., Hodell, D., and Charles, C. (2000). Geomagnetic paleointensity from late Brunhes-age piston cores from the subantarctic South Atlantic. Earth Planet. Sci. Lett., 175:145–160.CrossRefGoogle Scholar
  7. Clement, B. (1991). Geographical distribution of transitional VGPs: Evidence for nonzonal equatorial symmetry during the Brunhes-Matuyama geomagnetic reversal. Earth Planet. Sci. Lett., 29:48–58.CrossRefGoogle Scholar
  8. Coe, R. (1967a). Paleo-intensities of the Earth’s magnetic field determined from Tertiary and Quaternary rocks. J. Geophys. Res., 72:3247–3262.CrossRefGoogle Scholar
  9. Coe, R. S. (1967b). Palaeointensity of the Earth’s magnetic field determined from Tertiary and Quaternary rocks. J. Geophys. Res., 72:3247–3262.CrossRefGoogle Scholar
  10. Coe, R. S. (1974). The effect of magnetic interactions on paleointensity determinations by the Thelliers’ method. J. Geomag. Geoelectr., 26:311–317.Google Scholar
  11. Coe, R. S., Hongre, L., and Glatzmaier, G. A. (2000). An examination of simulated geomagnetic reversals from a palaeomagnetic perspective. Philos. Trans. R. Soc. Lond., 358:1141–1170.CrossRefGoogle Scholar
  12. Coe, R. S., Singer, B. S., Pringle, M. S., and Zhao, X. (2004a). Matuyama-Brunhes reversal and Kamikatsura event on Maui: paleo-magnetic directions, 40Ar/39Ar ages and implications. Earth Planet. Sci. Lett., 222:667–684.CrossRefGoogle Scholar
  13. Coe, R. S., Rijsager, J., Plenier, G., Leonhardt, R., and Krása, D. (2004b). Multidomain behaviour durinh Thellier paleointensity experiments: Results from the 1915 Mt. Lassen flow. Earth. Planet. Sci. Lett., 247:141–153.Google Scholar
  14. Dekkers, M. J. and Boehnel, H. (2006) Reliable absolute paleo-intensities independent of magnetic domian state. Earth Planet. Sci. Lett., 248:507–5016.CrossRefGoogle Scholar
  15. Dodson, M. H. and McClelland-Brown, E. (1980). Magnetic blocking temperatures of single-domain grains during slow cooling. J. Geophys. Res., 85:2625–2637.CrossRefGoogle Scholar
  16. Dunlop, D. (1973). Superparamagnetic and single-domain threshold sizes in magnetite. J. Geophys. Res., 78:1780–1793.CrossRefGoogle Scholar
  17. Dunlop, D. J. and Özdemir, Ö. (2000). Effect of grain size and domain state on thermal demagnetization tails. Geophys. Res. Lett., 27:1311–1314.CrossRefGoogle Scholar
  18. Fabian, K. (2001). A theoretical treatment of paleointensity determination experiments on rocks containing pseudo-single or multi domain magnetic particles. Earth Planet. Sci. Lett., 188:45–58.CrossRefGoogle Scholar
  19. Fabian, K. and Shcherbakov, V. P. (2004). Domain state stabilization by iterated thermal magnetization processes. Geophys. J. Int., 159:486–494.CrossRefGoogle Scholar
  20. Fox, J. M. W. and Aitken, M. J. (1980). Cooling-rate dependency of thermoremanent magnetisation. Nature, 283:462–463.CrossRefGoogle Scholar
  21. Glatzmaier, G. A., Coe, R. S., Hongre, L., and Roberts, P. H. (1999). The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature, 401(6756):885–890.CrossRefGoogle Scholar
  22. Gubbins, D. and Kelly, P. (1993). Persistent patterns in the geomagnetic field over the past 2.5 myr. Nature, 365:829–832.CrossRefGoogle Scholar
  23. Guillou, H., Singer, B., Laj, C., Kissel, C., Scaillet, S., and Jicha, B. (2004). On the age of the Laschamp geomagnetic excursion. Earth Planet. Sci. Lett., 227:331–343.CrossRefGoogle Scholar
  24. Gurevitsch, E. L., Heuneman, C., Radk’ko, V., Westphal, M., Bachtadse, V., Pozzi, J. P., Feinberg, H. (2004). Paleomagneism and magnetostratigraphy of the Permian-Triassic Sibirian trap basalts. Tectonophysics, 379:211–226.CrossRefGoogle Scholar
  25. Guyodo, Y. and Valet, J.-P. (1999). Global changes in the intensity of the Earth’s magnetic field during the past 800 kyr. Nature, 399:249–252.CrossRefGoogle Scholar
  26. Haag, M. (2000). Reliability of relative palaeointensities of a sediment core with climatically-triggered strong magnetisation changes. Earth Planet. Sci. Lett., 180:49–59.CrossRefGoogle Scholar
  27. Halgedahl, S. and Fuller, M. (1980). Magnetic domain observations of nucleation processes in fine particles of intermediate titanomagnetite. Nature, 288:70–72.CrossRefGoogle Scholar
  28. Harrison, C. G. A. (1966). The paleo-magnetism of deep-sea sediments. J. Geophys. Res., 71:3033–3043.Google Scholar
  29. Harrison, C. G. A. and B. L. K. Somayajulu (1966). Behaviour of the Earth’s magnetic field during a reversal. Nature, 212:1193–1195.CrossRefGoogle Scholar
  30. Hatakeyama, T. and Kono, M. (2002). Geomagnetic field model for the last 5 my: time-averaged field and secular variation. Phys. Earth Planet. Inter., 133:181–215.CrossRefGoogle Scholar
  31. Heller, R., Merrill, R. T., and McFadden, P. L. (2002). The variation of intensity of the Earth’s magnetic field with time. Phys. Earth Planet. Inter., 131:237–249.CrossRefGoogle Scholar
  32. Heller, R., Merrill, R. T., and McFadden, P. L. (2003). The two states of paleo-magnetic field intensities for the past 320 million years. Phys. Earth Planet. Inter., 135:211–223.CrossRefGoogle Scholar
  33. Henkel, O. (1964). Remanenzverhalten und Wechselwirkung in hartmagnetischen Teilchenkollektiven. Phys. Stat. Sol., 7:919–929.CrossRefGoogle Scholar
  34. Heunemann, C., Krása, D., Soffel, H. C., Gurevitch, E., and Bachtadse, V. (2004). Directions and intensities of the Earth’s magnetic field during a reversal: results from the Permo-Triassic Sibirian trap basalts, Russia. Earth Planet. Sci. Lett., 218:197–213.CrossRefGoogle Scholar
  35. Hillhouse, J. and Cox, A. (1976). Brunhes-Matuyama polarity transition. Earth Planet. Sci. Lett., 29:51–64.CrossRefGoogle Scholar
  36. Hoffman, K. A. (1981). Palaeomagnetic excursions, aborted reversals and transitional fields. Nature, 294:67–69.CrossRefGoogle Scholar
  37. Hoffman, K. A. (1992). Dipolar reversal states of the geomagnetic field and core mantle dynamics. Nature, 359:789–794.CrossRefGoogle Scholar
  38. Hoffman, K. A. (1996). Transitional paleo-magnetic field behavior: Preferred paths or patches? Surv. Geophys., 17:207–211.CrossRefGoogle Scholar
  39. Hofmann, D., Fabian, K., Schmieder, F., and Donner, B. (2005). A stratigraphic network from the subtropical and subantarctic South Atlantic: Multiparameter correlation of magnetic susceptibility,bulk density, X-ray fluorescence measurements and δ18O. Earth Planet. Sci. Lett., 240:694–709.CrossRefGoogle Scholar
  40. Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J. (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., editors, Milankovitch and Climate: Understanding the Response to Orbital Forcing, pp. 269–305. Reidel Publishing, Dordrecht.Google Scholar
  41. Johnson, C. L. and Constable, C. G. (1997). The time-averaged geomagnetic field: global and regional biases for 0-5 Ma. Geophys. J. Int., 131:643–666.CrossRefGoogle Scholar
  42. Johnson, E. A., Murphy, T., and Torreson, O. W. (1948). Pre-history of the Earth’s magnetic field. Terr. Mag. Atmos. Elec., 53:349–372.CrossRefGoogle Scholar
  43. Johnson, H. P., Kinoshita, H., and Merrill, R. T. (1975). Rock magnetism and paleo-magnetism of some North Pacific deep-sea sediments. Geol. Soc. Am. Bull., 86:412–420.CrossRefGoogle Scholar
  44. Juárez, M. T., Tauxe, L., Gee, J. S., and Pick, T. (1998). The intensity of the Earth’s magnetic field over the past 160 million years. Nature, 394:878–881.CrossRefGoogle Scholar
  45. Katari, K. and Bloxham, J. (2001). Effects of sediment aggregate size on DRM intensity :A new theory. Earth Planet. Sci. Lett., 186:113–122.CrossRefGoogle Scholar
  46. King, J. W., Banerjee, S. K., and Marvin, J. A. (1983). A new rock magnetic approach to selecting sediments for geomagnetic paleointensity studies: application to paleointensity for the last 4000 years. J. Geophys. Res., 88:5911–5921.CrossRefGoogle Scholar
  47. Kono, M. and Hiroi, O. (1996). Paleosecular variation of field intensites and dipole moments. Earth Planet. Sci. Lett., 139:251–262.CrossRefGoogle Scholar
  48. Krása, D., Heunemann, C., Leonhardt, R., and Petersen, N. (2003). Experimental procedure to detect multidomain remanence during thellier-thellier experiments. Phys. Chem. Earth, 28:681–687.Google Scholar
  49. Krása, D., Shcherbakov, V. P., Kunzmann, T., and Petersen, N. (2005). Self-reversal of remanent magnetization in basalts due to partially oxidized titanomagnetites. Geophys. J. Int., 162:115–136.CrossRefGoogle Scholar
  50. Laj, C., Kissel, C., Mazaud, A., Channell, J., and Beer, J. (2000). North Atlantic paleointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Phil. Trans. Roy. Soc., 3358:1009–1025.Google Scholar
  51. Laj, C., Mazaud, A., Weeks, R., Fuller, M., and Herrero-Bevera, E. (1991). Geomagnetic reversal paths. Nature, 351:447.CrossRefGoogle Scholar
  52. Langereis, C., Dekkers, M., de Lange, G., Paterne, M., and van Santvoort, P. (1997). Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophys. J. Int., 129:75–94.CrossRefGoogle Scholar
  53. Leonhardt, R. (2006). Analyzing rock magnetic measurements: The Rockmaganalyzer 1.0 software. Comp. Geosci., 32, 1420–1431.CrossRefGoogle Scholar
  54. Leonhardt, R. and Fabian, K. (2007). Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama-Brunhes transition: Iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett., 253:172–195.CrossRefGoogle Scholar
  55. Leonhardt, R., Hufenbecher, F., Heider, F., and Soffel, H. C. (2000). High absolute paleointensity during a mid Miocene excursion of the Earth’s magnetic field. Earth Planet. Sci. Lett., 184:141–154.CrossRefGoogle Scholar
  56. Leonhardt, R., Matzka, J., Hufenbecher, F., Heider, F., and Soffel, H. (2002). A reversal of the Earth’s magnetic field recorded in mid Miocene lava flows of Gran Canaria: Paleodirections. J. Geophys. Res., 107(B1):2024, doi:10.1029/2001JB000322.CrossRefGoogle Scholar
  57. Leonhardt, R., Matzka, J., and Menor, E. A. (2003). Absolute paleo-intensities and paleo-directions from Fernando de Noronha, Brazil. Phys. Earth Planet. Inter., 139:285–303.CrossRefGoogle Scholar
  58. Leonhardt, R., Heunemann, C., and Krása, D. (2004a). Analyzing absolute paleointensity determinations: Acceptance criteria and the software Thelliertool4.0. 5:Q12016, doi:10.1029/2004GC000807.Google Scholar
  59. Leonhardt, R., Krása, D., and Coe, R. S. (2004b). Multidomain behavior during Thellier paleointensity experiments: A phenomenological model. Phys. Earth Planet. Inter., 147:127–140.CrossRefGoogle Scholar
  60. Leonhardt, R., Matzka, J., Nichols, A., and Dingwell, D. (2006). Cooling rate correction of paleointensity determination for volcanic glasses by relaxation geospeedometry. Earth Planet. Sci. Lett., 243:282–292.CrossRefGoogle Scholar
  61. Leonhardt, R. and Soffel, H. C. (2002). A reversal of the Earth’s magnetic field recorded in mid Miocene lava flows of Gran Canaria: Paleointensities. J. Geophys. Res., 107(B11):2299, doi:10.1029/2001JB000949.CrossRefGoogle Scholar
  62. Leonhardt, R. and Soffel, H. C. (2006). The growth, collapse and quiescence of Teno volcano, Tenerife: new constraints from paleo-magnetic data. Int. J. Earth Sci. (Geol. Rundsch.), 95:1053–1064.CrossRefGoogle Scholar
  63. Levi, S. (1977). The effect of magnetite particle size on paleointensity determinations of the geomagnetic field. Phys. Earth Planet. Inter., 13:245–259.CrossRefGoogle Scholar
  64. Levi, S. and Banerjee, S. K. (1976). On the possibility of obtaining relative paleo-intensities from lake sediments. Earth Planet. Sci. Lett., 29:219–226.CrossRefGoogle Scholar
  65. Lund, S., Stoner, J., Channell, J., and Acton, G. (2006). A summary of Brunhes paleo-magnetic field variability recorded in Ocean Drilling Program cores. Phys. Earth Planet. Inter., 156:194–204.CrossRefGoogle Scholar
  66. Martinson, D., Pisias, N., Hays, J., Imbrie, J., Moore, T.C., J., and Shackleton, N. (1987). Age dating and the orbital theory of the ice ages of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27:1–29.CrossRefGoogle Scholar
  67. Mazaud, A., Sicre, M., Ezat, U., Pichon, J., Duprat, J., Laj, C., Kissel, C., Beaufort, L., Michel, E., and Turon, J. (2002). Geomagnetic-assisted stratigraphy and sea surface temperature changes in core MD94-103 (Southern Indian Ocean): possible implications for North-South climatic relationships around H4. Earth Planet. Sci. Lett., 201:159–170.CrossRefGoogle Scholar
  68. McClelland-Brown, E. (1984). Experiments on trm intensity dependence on cooling rate. Geophys. Res. Lett., 11:205–208.CrossRefGoogle Scholar
  69. McElhinny, M. W. and Lock, J. (1996). IAGA paleo-magnetic databases with access. Surv. Geophys., 17:575–591.CrossRefGoogle Scholar
  70. Néel, L. (1949). Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Geophys., 5:99–136.Google Scholar
  71. Nowaczyk, N. and Baumann, M. (1992). Combined high-resolution magnetostratigraphy and nannofossil biostratigraphy for late Quaternary Arctic Ocean sediments. Deep Sea Res., 39:567–601.CrossRefGoogle Scholar
  72. Nowaczyk, N. R. and Knies, J. (2000) Magnetostratigraphic results from Eastern Artic Ocean-AMS14C ages and relative paleointensity data of the Mono Lake and Laschamp geomagnetic events. Geophys. J. Int., 140:185–197.CrossRefGoogle Scholar
  73. Nowaczyk. N. R., Antonow, M., Knies, J., Spielhagen, R. F. (2003) Further magnetostratigraphic results on reversal excursions during the last 50 ka derived from northern high latitudes and discrepancies in their precise AMS14C dating. Geophys. J. Int., 155:1065–1080.CrossRefGoogle Scholar
  74. Opdyke, N. D. and Channell, J. E. T. (1996). Magnetic Stratigraphy. Academic Press, International Geophysics Series, Volume 64, San Diego, USA.CrossRefGoogle Scholar
  75. Otofuji, Y. and Sasajima, S. (1981). A magnetization process of sediments: laboratory experiments on post-depositional remanent magnetization. GeoPhys. J. R. Astr. Soc., 66:241–259.Google Scholar
  76. Perrin, M. and Shcherbakov, V. (1997). Paleointensity of the Earth’s magnetic field for the past 400 ma: Evidence for a dipole structure during the mesozoic low. J. Geomag. Geoelectr., 49:601–614.Google Scholar
  77. Piper, J. D. A. and Richardson, A. (1972). The palaeomagnetism of the Gulf of Guinea volcanic province, West Africa. Geophys. J. R. Astr. Soc., 29:147–171.Google Scholar
  78. Prévot, M. and Camps, P. (1993). Absence of preferred longitude sectors for poles from volcanic records of geomagnetic reversals. Nature, 366:53–57.CrossRefGoogle Scholar
  79. Prévot, M., Derder, M., McWilliams, M., and Thompson, J. (1990). Intensity of the Earth’s magnetic field: evidence for a Mesozoic dipole low. Earth Planet. Sci. Lett., 97:129–139.CrossRefGoogle Scholar
  80. Reid, J. (1989). On the total geostrophic circulation of the South Atlantic Ocean: Flow patterns, tracers, and transports. Prog. Oceanog., 23:149–244.CrossRefGoogle Scholar
  81. Richardson, A. and Watkins, N. D. (1967). Paleomagnetism of Atlantic islands: Fernando Noroñha. Nature, 215:1470–1473.CrossRefGoogle Scholar
  82. Riisager, P. and Riisager, J. (2001). Detecting multidomain magnetic grains in Thellier paleointensity experiments. Phys. Earth Planet. Inter., 125:111–117.CrossRefGoogle Scholar
  83. Roberts, A. P. and Winklhofer, M. (2005) Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling. Earth Planet. Sci. Lett., 227:345–359.CrossRefGoogle Scholar
  84. Schmieder, F. (2004). Magnetic signals in Plio-Pleistocene sediments of the South Atlantic: Chronostratigraphic usability and paleo-ceanographic implication. In Wefer, G., Mulitza, S., and Ratmeyer, V., editors, The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems/, pp. 269–305. Springer-Verlag, Berlin.Google Scholar
  85. Schult, A., Calvo Rathert, M., Guerreiro, S., and Bloch, W. (1986). Paleomagnetism and rock magnetism of Fernando de Noronha, brazil. Earth Planet. Sci. Lett., 79:208–216.CrossRefGoogle Scholar
  86. Selkin, P. A. and Tauxe, L. (2000). Long-term variations in paleointensity. Philos. Trans. R. Soc., 358:1065–1088.CrossRefGoogle Scholar
  87. Shaw, J. (1974). A new method of determining the magnetide of the paleo-magnetic field: Application to five historic lavas and five archeological samples. Geophys. J. R. Astr. Soc., 39:133–141.Google Scholar
  88. Shcherbakov, V. P. and Shcherbakova, V. V. (1987). On the physics of post-depositional remanent magnetization. Phys. Earth Planet. Inter., 46:64–70.CrossRefGoogle Scholar
  89. Shcherbakov, V. P., Solodovnikov, G. M., and Sycheva, N. K. (2002). Variations in the geomagnetic dipole during the past 400 million years (volcanic rocks). Phys. Solid Earth, 38:113–119.Google Scholar
  90. Stacey, F. D. (1972). On the role of Brownian motion in the control of detrital remanent magnetization in sediments. Pure Appl. Geophys., 98:139–145. IRM library.CrossRefGoogle Scholar
  91. Stoner, J., Channell, J., Hodell, D., and Charles, C. (2003). A ∼580 kyr paleo-magnetic record from the sub-Antarctic South Atlantic (Ocean drilling Program Site 1089). J. Geophys. Res., 108:doi:10.1029/2001JB001390.Google Scholar
  92. Stoner, J., Laj, C., Channell, J., and Kissel, C. (2002). South Atlantic and North Atlantic geomagnetic paleointensity stacks (0- 80 ka): implications for inter-hemispheric correlation. Quat. Sci. Rev., 21:1141–1151.CrossRefGoogle Scholar
  93. Stramma, L. and England, M. (1999). On the water masses and mean circulation of the South Atlantic Ocean. J. Geophys. Res., 104(C9):20863–20883.CrossRefGoogle Scholar
  94. Stramma, L. and Peterson, R. (1990). The South Atlantic current. J. Phys. Ocean., 20:846–859.CrossRefGoogle Scholar
  95. Talley, L. (1996). Antarctic intermediate water in the South Atlantic. In Wefer, G., Berger, W., Siedler, G., and Webb, D., editors, The South Atlantic: Present and Past Circulation /, pp. 219–238. Springer Verlag, Berlin.Google Scholar
  96. Tanaka, H., Kono, M., and Uchimura, H. (1995). Some global features of palaeointensity in geological time. Geophys. J. Int., 120:883–896.CrossRefGoogle Scholar
  97. Tarduno, J. A. and Smirnov, A. V. (2001). Stability of the earth with respect to the spin axis for the last 130 million years. Earth Planet. Sci. Lett., 184:549–553.CrossRefGoogle Scholar
  98. Tauxe, L. (1993). Sedimentary records of relative paleointensity: Theory and practice. Rev. Geophys., 31:319–354.CrossRefGoogle Scholar
  99. Thellier, E. (1941). Sur la vérification d’une méthode permettant de déterminer l’intensité du champ magnétique terrestre dans le passé. C. R. Acad. Sci., 212:281–283.Google Scholar
  100. Thellier, E. and Thellier, O. (1959). Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Annales de Géophysique, 15:285–376.Google Scholar
  101. Theyer, F., Herrero-Bervera, E., and Hsu, V. (1985). The zonal harmonic model of polarity transitions: a test using successive reversals. J. Geophys. Res., 90:1963–1982.CrossRefGoogle Scholar
  102. Thouveny, N., Carcaillet, J., Moreno, E., Leduc, G., and Nerini, D. (2004). Geomagnetic moment variation and paleo-magnetic excursions since 4000 kyr BP: a stacked record from sedimentary sequences of the Portuguese margin. Earth Planet. Sci. Lett, 219:377–396.CrossRefGoogle Scholar
  103. Thouveny, N., Creer, K., and Blunk, I. (1990). Extension of the Lac du Bouchet palaeomagnetic record over the last 120000 years. Earth Planet. Sci. Lett., 97:140–161.CrossRefGoogle Scholar
  104. Thouveny, N., Creer, K., and Williamson, D. (1993). Geomagnetic moment variations in the last 70000 years, impact on production of cosmogenic isotopes. Glob. Planet. Change, 7:157–172.CrossRefGoogle Scholar
  105. Tucker, P. (1980). Stirred remanent magnetization: a laboratory analogue of post-depositional realignment. J. Geophys., 48:153–157.Google Scholar
  106. Tucker, P. (1981a). Low-temperature magnetic hysteresis properties of multidomain single-crystal titanomagnetite. Earth Planet. Sci. Lett., 54:167–172.CrossRefGoogle Scholar
  107. Tucker, P. (1981b). Paleointensities from sediments: normalization by laboratory redepositions. Earth Planet. Sci. Lett., 56:398–404.CrossRefGoogle Scholar
  108. Valet, J.-P., Brassat, J., Quidelleur, X., Soler, V., Gillot, P.-Y., and Hongre, L. (1999). Paleointensity variations across the last geomagnetic reversal at La Palma, Canary Islands, Spain. J. Geophys. Res., 104:7577–7598.CrossRefGoogle Scholar
  109. Valet, J.-P. and Herrero-Bervera, E. (2003). Some characteristics of geomagnetic reversals inferred from detailed volcanic records. Compt. Ren. Geosci., 335:79–90.CrossRefGoogle Scholar
  110. Valet, J.-P., Tucholka, P., Courtillot, V. E., and Meynadier, L. (1992). Palaeomagnetic constraints on the geometry of the geomagnetic field during reversals. Nature, 356:400–407.CrossRefGoogle Scholar
  111. van Vreumingen, M. J. (1993a). The influence of salinity and flocculation upon the acquisition of remanent magnetization in some artificial sediments. Geophys. J. Int., 114:607–614.CrossRefGoogle Scholar
  112. van Vreumingen, M. J. (1993b). The magnetization intensity of some artificial suspensions while flocculating in a magnetic field. Geophys. J. Int., 114:601–606.CrossRefGoogle Scholar
  113. Veitch, R. J., Hedley, I. G., and Wagner, J.-J. (1984). An investigation of the intensity of the geomagnetic field during Roman times using magnetically anisotropic bricks and tiles. Arch. Sc. Genéve, 37:359–373.Google Scholar
  114. von Dobeneck, T. and Schmieder, F. (1999). Using rock magnetic proxy records for orbital tuning and extended time series analyses into the super- and sub-Milankovitch Bands. In Fischer, G. and Wefer, G., editors, Use of Proxies in Paleo-ceanography: Examples from the South Atlantic/, pp. 601–633. Springer-Verlag, Berlin.Google Scholar
  115. Wefer, G. and cruise participants (2001). Report and preliminary results of Meteor Cruise M46/4, Mar del Plata (Argentinia)-Salvador da Bahia (Brazil), February 10- March 13, 2000. With partial results of Meteor cruise M46/2. Berichte, FB Geowissenschaften, Universität Bremen, 173.Google Scholar
  116. Wehland, F., Leonhardt, R., Vadeboin, F., and Appel, E. (2005) Magnetic interaction analysis of basaltic samples and preselection for absolute paleointensity measurements. Geophys. J. Int., 162:315–320.CrossRefGoogle Scholar
  117. Williams, I. and Fuller, M. (1981). Zonal harmonic models of reversal transition fields. J. Geophys. Res., 86(B12):11657–11665.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Karl Fabian
    • 1
  • Roman Leonhardt
    • 2
  1. 1.Geological Survey of NorwayLeiv Eiriksons veiNorwegen
  2. 2.Department Angewandte Geowissenschaften und Geophysik Lehrstuhl Technische ÖkosystemanalyseUniversität Leoben Peter TunnerStraβe 25-27 8700Austria

Personalised recommendations