Advertisement

Microquasars: Summary and Outlook

  • I.F. Mirabel
Part of the Lecture Notes in Physics book series (LNP, volume 794)

Abstract

Microquasars are compact objects (stellar-mass black holes and neutron stars) that mimic, on a smaller scale, many of the phenomena seen in quasars. Their discovery provided new insights into the physics of relativistic jets observed elsewhere in the Universe, and in particular, the accretion–jet coupling in black holes. Microquasars are opening new horizons for the understanding of ultraluminous X-ray sources observed in external galaxies, gamma-ray bursts of long duration, and the origin of stellar black holes and neutron stars. Microquasars are one of the best laboratories to probe General Relativity in the limit of the strongest gravitational fields, and as such, have become an area of topical interest for both high energy physics and astrophysics. At present, back hole astrophysics exhibits historical and epistemological similarities with the origins of stellar astrophysics in the last century.

Keywords

Black Hole Neutron Star Accretion Disk Compact Object Solar Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi et al.: Science, 314, 1424 (2006)CrossRefADSGoogle Scholar
  2. 2.
    J. Albert, E. Aliu, H. Anderhub et al.: ApJ, 665, L51 (2007)CrossRefADSGoogle Scholar
  3. 3.
    A.J. Castro-Tirado, S. Brandt, N. Lund et al.: ApJ Suppl., 92, 469 (1994)CrossRefADSGoogle Scholar
  4. 4.
    M. Della Valle, G. Chincarini, N. Panagia et al.: Nature, 444, 1050 (2006)CrossRefADSGoogle Scholar
  5. 5.
    V. Dhawan, I.F. Mirabel, L.F. Rodríguez: ApJ, 543, 373 (2000)CrossRefADSGoogle Scholar
  6. 6.
    V. Dhawan, A. Mioduszewski, M. Rupen: Proceedings of the VI Microquasar Workshop: Microquasars and Beyond, PoS(MQW6)052 (2006)Google Scholar
  7. 7.
    V. Dhawan, I.F. Mirabel, M. Ribó et al.: ApJ, 668, 430 (2007)CrossRefADSGoogle Scholar
  8. 8.
    G. Dubus: A&A, 456, 801 (2006)CrossRefADSGoogle Scholar
  9. 9.
    G. Fabbiano: ARA&A, 44, 323 (2006)CrossRefADSGoogle Scholar
  10. 10.
    R.P. Fender, S.T. Garrington, D.J. McKay et al.: MNRAS, 304, 865 (1999)CrossRefADSGoogle Scholar
  11. 11.
    R.P. Fender, T.M. Belloni, E. Gallo: MNRAS, 355, 1105 (2004) CrossRefADSGoogle Scholar
  12. 12.
    R. Giacconi, H. Rursky, J.R. Waters: Nature, 204, 981 (1964)CrossRefADSGoogle Scholar
  13. 13.
    J. Greiner, J.G. Cuby, M.J. McCaughrean: Nature, 414, 522 (2001)CrossRefADSGoogle Scholar
  14. 14.
    M.M. Kasliwal, S.B. Cenko, S.R. Kulkarni et al.: ApJ, 678, 1127 (2008)CrossRefADSGoogle Scholar
  15. 15.
    A.R. King, M.B. Davies, M.J. Ward et al.: ApJ, 552, L109 (2001)CrossRefADSGoogle Scholar
  16. 16.
    E. Le Floc’h, P.-A. Duc, I.F. Mirabel et al.: A&A, 400, 499 (2003)CrossRefADSGoogle Scholar
  17. 17.
    M. Leventhal, C.J. MacCallum, S.D. Barthelmy et al.: Nature, 339, 36 (1989)CrossRefADSGoogle Scholar
  18. 18.
    B. Margon, H.C. Ford, J.I. Katz et al.: ApJ, 230, L41 (1979)CrossRefADSGoogle Scholar
  19. 19.
    A.P. Marscher, S.G. Jorstad, J.-L. Gómez: Nature, 417, 625 (2002)CrossRefADSGoogle Scholar
  20. 20.
    J.E. McClintock, R. Shafee, R. Narayan et al.: ApJ, 652, 518 (2006)CrossRefADSGoogle Scholar
  21. 21.
    I.F. Mirabel: Science, 312, 1759 (2006)CrossRefADSGoogle Scholar
  22. 22.
    I.F. Mirabel, L.F. Rodríguez, B. Cordier et al.: Nature, 358, 215 (1992)CrossRefADSGoogle Scholar
  23. 23.
    I.F. Mirabel, L.F. Rodríguez: Nature, 371, 46 (1994)CrossRefADSGoogle Scholar
  24. 24.
    I.F. Mirabel, V. Dhawan, S. Chaty et al.: A&A, 330, L9 (1998)ADSGoogle Scholar
  25. 25.
    I.F. Mirabel, L.F. Rodríguez: Nature, 392, 673 (1998)CrossRefADSGoogle Scholar
  26. 26.
    I.F. Mirabel, L.F. Rodríguez: ARA&A, 37, 409 (1999)CrossRefADSGoogle Scholar
  27. 27.
    I.F. Mirabel, V. Dhawan, R.P. Mignani et al.: Nature, 413, 139 (2001)CrossRefADSGoogle Scholar
  28. 28.
    I.F. Mirabel, I. Rodrigues: Sky & Telescope, 32, May (2002)Google Scholar
  29. 29.
    I.F. Mirabel, R.P. Mignani, I. Rodrigues et al.: A&A, 395, 595 (2002)CrossRefADSGoogle Scholar
  30. 30.
    I.F. Mirabel, I. Rodrigues: Science, 300, 1119 (2003)CrossRefADSGoogle Scholar
  31. 31.
    J.A. Orosz, E. Kuulkers, M. van der Klis et al.: ApJ, 555, 489 (2001)CrossRefADSGoogle Scholar
  32. 32.
    J.A. Orosz, J.E. McClintock, R. Narayan et al.: Nature, 449, 872 (2007)CrossRefADSGoogle Scholar
  33. 33.
    M.W. Pakull, L. Mirioni: Rev. Mex. Astr. & Ap., 15, 197 (2003)ADSGoogle Scholar
  34. 34.
    A.H. Prestwich, R. Kilgard, P.A. Crowther et al.: ApJ, 669, L21 (2007)CrossRefADSGoogle Scholar
  35. 35.
    R.A. Remillard, J.E. McClintock: ARA&A, 44, 49 (2006)CrossRefADSGoogle Scholar
  36. 36.
    M. Ribó, J.M. Paredes, G.E. Romero et al.: A&A, 384, 954 (2002)CrossRefADSGoogle Scholar
  37. 37.
    G.E. Romero: Gamma-ray emission from microquasars: Leptonic vs. Hadronic models. In: Relativistic Astrophysics Legacy and Cosmology – Einstein’s, ESO Astrophysics Symposia, pp. 480–482. Springer-Verlag, Berlin, Heidelberg (2008)CrossRefGoogle Scholar
  38. 38.
    Y. Tanaka: AN, 327, 1098 (2006)ADSGoogle Scholar
  39. 39.
    H. van der Laan: Nature, 211, 1131 (1966)CrossRefADSGoogle Scholar
  40. 40.
    G. Weidenspointner, G. Skinner, J. Pierre et al.: Nature, 451, 159 (2008)CrossRefADSGoogle Scholar
  41. 41.
    S.N. Zhang, W. Cui, W. Chen: ApJ, 482, L155 (1997)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratoire AIM, Irfu/Service d’Astrophysique, Bat. 709, CEA-Saclay, 91191 Gif-sur-Yvette CedexFrance and Instituto de Astronomía y Física del Espacio (IAFE)Buenos AiresArgentina

Personalised recommendations