Modelling Architectural Visual Experience Using Non-linear Dimensionality Reduction

  • Stephan K. Chalup
  • Riley Clement
  • Chris Tucker
  • Michael J. Ostwald
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4828)


This paper addresses the topic of how architectural visual experience can be represented and utilised by a software system. The long-term aim is to equip an artificial agent with the ability to make sensible decisions about aesthetics and proportions. The focus of the investigation is on the feature of line distributions extracted from digital images of house façades. It is demonstrated how the dimensionality reduction method isomap can be applied to calculate non-linear “streetmanifolds” where each point on the manifold corresponds to a house façade. Through interpolation between manifold points and the application of an inverse Hough transform, basic structure plans for new house façades are obtained. If the interpolated points are close to the manifold it can be argued that the new plans reflect the character of the surrounding streetscape. The method is also demonstrated using basic examples which can be represented by circles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berleant, A.: The Aesthetics of Environment. Temple University Press (1995)Google Scholar
  2. 2.
    Berleant, A.: Aesthetics and Environment: Theme and Variations on Art and Culture. Ashgate Publishing, Limited (2005)Google Scholar
  3. 3.
    Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bulletin of the Calcutta Mathematical Society 35, 99–109 (1943)MATHMathSciNetGoogle Scholar
  4. 4.
    Burges, C.J.C.: Geometric Methods for Feature Extraction and Dimensional Reduction. In: Data Mining and Knowledge Discovery Handbook: A Complete Guide for Researchers and Practitioners, Kluwer Academic Publishers, Dordrecht (2005)Google Scholar
  5. 5.
    Chalup, S.K., Clement, R., Marshall, J., Tucker, C., Ostwald, M.J.: Representations of streetscape perceptions through manifold learning in the space of hough arrays. In: 2007 IEEE Symposium on Artificial Life, April 1-5, 2007, IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  6. 6.
    Chalup, S.K., Clement, R., Ostwald, M.J., Tucker, C.: Applications of manifold learning in architectural façade and streetscape analysis. In: Workshop on Novel Applications of Dimensionality Reduction at NIPS, Whistler CN 2006 (2006)Google Scholar
  7. 7.
    Chalupa, L.M., Werner, J.S. (eds.): The Visual Neurosciences. MIT Press, Cambridge (2004)Google Scholar
  8. 8.
    Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. 2nd edn. Chapman & Hall/CRC (2001)Google Scholar
  9. 9.
    DIPNR: Neighbourhood Character. NSW Department of Infrastructure Planning & Natural Resources, Sydney (2004)Google Scholar
  10. 10.
    Frazer, J.: An Evolutionary Architecture. Architectural Association, London (1995)Google Scholar
  11. 11.
    Grill-Spector, K., Malach, R.: The human visual cortex. Annual Reviews Neuroscience 27, 649–677 (2004)CrossRefGoogle Scholar
  12. 12.
    Groat, L.: Contextual compatibility in architecture: An issue of personal taste? In: Nasar, J. (ed.) Environmental aesthetics: Theory, research, and applications, pp. 228–253. Cambridge University Press, Cambridge (1988)Google Scholar
  13. 13.
    Hemberg, M., O’Reilly, U.M., Menges, A., Jonas, K., Goncalves, M., Fuchs, S.: Exploring generative growth and evolutionary computation for architectural design. In: Machado, P., Morelo, J.J. (eds.) Art of Artificial Evolution, Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Hough, P.V.C.: Methods and means for recognizing complex patterns. U.S. Patent 3,069,654 (1962)Google Scholar
  15. 15.
    Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. Journal of Physiology (London) 160, 106–154 (1962)Google Scholar
  16. 16.
    Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)Google Scholar
  17. 17.
    Kailath, T.: The divergence and bhattacharyya distance measures in signal selection. IEEE Transactions on Communication Technology 15, 52–60 (1967)CrossRefGoogle Scholar
  18. 18.
    Koffka, K.: Principles of Gestalt Psychology. Harcourt Brace, New York (1935)Google Scholar
  19. 19.
    Larsson, J., Landy, M.S., Heeger, D.J.: Orientation-selective adaptation to first- and second-order patterns in human visual cortex. Journal of Neurophysiology 95, 862–881 (2005)CrossRefGoogle Scholar
  20. 20.
    O’Reilly, U.M., Hemberg, M., Menges, A.: Evolutionary computation and artificial life in architecture: Exploring the potential of generative and genetic algorithms as operative design tools. Architectural Design, Special Issue on Emergence 74, 48–53 (2004)Google Scholar
  21. 21.
    Reich, Y.: A model of aesthetic judgment in design. Artificial Intelligence in Engineering 8, 141–153 (1993)CrossRefGoogle Scholar
  22. 22.
    Ross, I., O’Reilly, U.M., Testa, P.: Emergent design: Artificial life for architecture design (2000)Google Scholar
  23. 23.
    Saul, L.K., Weinberger, K.Q., Sha, F., Ham, J., Lee, D.D.: Spectral methods for dimensionality reduction. In: Chapelle, O., Schölkopf, B., Zien, A. (eds.) Semi-Supervised Learning, pp. 293–308. MIT Press, Cambridge, MA (2006)Google Scholar
  24. 24.
    Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice-Hall, Englewood Cliffs (2001)Google Scholar
  25. 25.
    Spivac, M.: A Comprehensive Introduction to Differential Geometry, 2nd edn. Publish or Perish, Inc. (1979)Google Scholar
  26. 26.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  27. 27.
    Tucker, C., Ostwald, M.J., Chalup, S.K.: A method for the visual analysis of streetscape character using digital image processing. In: Bromberek, Z. (ed.) Contexts of Architecture: Proceedings of the 38th Annual Conference of the Architectural Science Association ANZAScA and the International Building Performance Simulation Association, Launceston, Tasmania: Australia and New Zealand Architectural Science Association, pp. 134–140 (2004)Google Scholar
  28. 28.
    Tucker, C., Ostwald, M.J., Chalup, S.K., Marshall, J.: Sustaining residential social space: a visual and spatial analysis of the nearly urban. In: ANZAScA 40th Annual Conference of the Architectural Science Association, “Challenges for architectural science in changing climates”, November 22-25, 2006, The University of Adelaide Adelaide, South Australia (2006)Google Scholar
  29. 29.
    Weinberger, K.Q., Saul, L.K.: An introduction to nonlinear dimensionality reduction by maximum variance unfolding. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), Nectar paper, Boston, MA (2006)Google Scholar
  30. 30.
    Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt II. Psychologische Forschung 4, 301–350 (1923)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Stephan K. Chalup
    • 1
  • Riley Clement
    • 1
  • Chris Tucker
    • 1
  • Michael J. Ostwald
    • 1
  1. 1.Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan 2308Australia

Personalised recommendations