Advertisement

Information Transfer by Particles in Cellular Automata

  • Joseph T. Lizier
  • Mikhail Prokopenko
  • Albert Y. Zomaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4828)

Abstract

Particles, gliders and domain walls have long been thought to be the information transfer entities in cellular automata. In this paper we present local transfer entropy, which quantifies the information transfer on a local scale at each space-time point in cellular automata. Local transfer entropy demonstrates quantitatively that particles, gliders and domain walls are the dominant information transfer entities, thereby supporting this important conjecture about the nature of information transfer in cellular automata.

Keywords

Domain Wall Mutual Information Cellular Automaton Information Transfer Cell Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klyubin, A.S., Polani, D., Nehaniv, C.L.: All else being equal be empowered. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 744–753. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Prokopenko, M., Gerasimov, V., Tanev, I.: Evolving spatiotemporal coordination in a modular robotic system. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 548–559. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Lungarella, M., Sporns, O.: Mapping information flow in sensorimotor networks. PLoS Computational Biology 2(10), e144 (2006)Google Scholar
  4. 4.
    Mitchell, M.: Computation in cellular automata: A selected review. In: Gramss, T., Bornholdt, S., Gross, M., Mitchell, M., Pellizzari, T. (eds.) Non-Standard Computation, pp. 95–140. VCH Verlagsgesellschaft, Weinheim (1998)CrossRefGoogle Scholar
  5. 5.
    Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Physica (Amsterdam) 42D(1-3), 12–37 (1990)Google Scholar
  6. 6.
    Brown, J.A., Tuszynski, J.A.: A review of the ferroelectric model of microtubules. Ferroelectrics 220, 141–156 (1999)CrossRefGoogle Scholar
  7. 7.
    Shalizi, C.R., Shalizi, K.L., Haslinger, R.: Quantifying self-organization with optimal predictors. Phys. Rev. Lett. 93(11), 118701 (2004)CrossRefGoogle Scholar
  8. 8.
    Wuensche, A.: Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the z parameter. Complexity 4(3), 47–66 (1999)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000)CrossRefGoogle Scholar
  10. 10.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign, IL, USA (2002)Google Scholar
  11. 11.
    Hanson, J.E., Crutchfield, J.P.: The attractor-basin portait of a cellular automaton. J. Stat. Phys. 66, 1415–1462 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mitchell, M., Crutchfield, J.P., Hraber, P.T.: Evolving cellular automata to perform computations: Mechanisms and impediments. Physica (Amsterdam) 75D, 361–391 (1994)Google Scholar
  13. 13.
    Hordijk, W., Shalizi, C.R., Crutchfield, J.P.: Upper bound on the products of particle interactions in cellular automata. Physica (Amsterdam) 154D(3-4), 240–258 (2001)MathSciNetGoogle Scholar
  14. 14.
    Shalizi, C.R., Haslinger, R., Rouquier, J.B., Klinkner, K.L., Moore, C.: Automatic filters for the detection of coherent structure in spatiotemporal systems. Phys. Rev. E 73(3), 36104 (2006)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Helvik, T., Lindgren, K., Nordahl, M.G.: Local information in one-dimensional cellular automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 121–130. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    MacKay, D.J.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  17. 17.
    Prokopenko, M., Boschetti, F., Ryan, A.J.: An information-theoretic primer on complexity, self-organisation and emergence. Adv. Comp. Sys (submitted)Google Scholar
  18. 18.
    Ay, N., Polani, D.: Information flows in causal networks. Adv. Comp. Sys. (to be published)Google Scholar
  19. 19.
    Wójtowicz, M.: Java Cellebration v.1.50 (2002), online software http://psoup.math.wisc.edu/mcell/mjcell/mjcell.html
  20. 20.
    Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Detecting non-trivial computation in complex dynamics. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 895–904. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joseph T. Lizier
    • 1
    • 2
  • Mikhail Prokopenko
    • 1
  • Albert Y. Zomaya
    • 2
  1. 1.CSIRO Information and Communications Technology Centre, Locked Bag 17, North Ryde, NSW 1670Australia
  2. 2.School of Information Technologies, The University of Sydney, NSW 2006Australia

Personalised recommendations