A Dual Phase Evolution Model of Adaptive Radiation in Landscapes

  • Greg Paperin
  • David Green
  • Suzanne Sadedin
  • Tania Leishman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4828)

Abstract

In this study, we describe an evolutionary mechanism – Dual Phase Evolution (DPE) – and argue that it plays a key role in the emergence of internal structure in complex adaptive systems (CAS). Our DPE theory proposes that CAS exhibit two well-defined phases – selection and variation – and that shifts from one phase to the other are triggered by external perturbations. We discuss empirical data which demonstrates that DPE processes play a prominent role in species evolution within landscapes and argue that processes governing a wide range of self-organising phenomena are similar in nature. In support, we present a simulation model of adaptive radiation in landscapes. In the model, organisms normally exist within a connected landscape in which selection maintains them in a stable state. Intermittent disturbances (such as fires, commentary impacts) flip the system into a disconnected phase, in which populations become fragmented, freeing up areas of empty space in which selection pressure lessens and genetic variation predominates. The simulation results show that the DPE mechanism may indeed facilitate the appearance of complex diversity in a landscape ecosystem.

Keywords

Dual Phase Evolution complex systems speciation adaptive radia- tion simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LiveGraph - a framework for real-time data visualisation, analysis and logging (accessed on 30.08.2007), http://www.live-graph.org
  2. 2.
    Green, D.G., Newth, D., Kirley, M.G.: Connectivity and catastrophe - towards a general theory of evolution. In: Bedau, M., McCaskill, J.S., Packard, N.H., Rasmussen, S., McCaskill, J., Packard, N. (eds.) Artificial Life VII (2000)Google Scholar
  3. 3.
    Green, D.G., Sadedin, S.: Interactions matter- complexity in landscapes and ecosystems. Ecological Complexity 2, 117–130 (2005)CrossRefGoogle Scholar
  4. 4.
    Green, D.G., Leishman, T.G., Sadedin, S.: Dual phase evolution: a mechanism for self-organization in complex systems. InterJournal Complex Systems (2006)Google Scholar
  5. 5.
    Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. Perseus Books (1995)Google Scholar
  6. 6.
    Levin, S.A.: Ecosystems and the Biosphere as Complex Adaptive Systems. Ecosystems 1, 431–436 (1998)CrossRefGoogle Scholar
  7. 7.
    Lenton, T.M., Van Oijen, M.: Gaia as a Complex Adaptive System. Philosophical Transactions of the Royal Society: Biological Sciences 357, 683–695 (2002)CrossRefGoogle Scholar
  8. 8.
    Watson, A.J., Lovelock, J.E.: Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B 35, 284–289 (1983)CrossRefGoogle Scholar
  9. 9.
    Weber, S.L.: On Homeostasis in Daisyworld. Climatic Change 48, 465–485 (2001)CrossRefGoogle Scholar
  10. 10.
    Gavrilets, S.: Fitness Landscapes and the Origin of Species. Princeton University Press, Princeton / Oxford (2004)Google Scholar
  11. 11.
    Green, D.G.: Fire and Stability in the Postglacial Forests of Southwest Nova Scotia. Journal of Biogeography 9, 29–40 (1982)CrossRefGoogle Scholar
  12. 12.
    Bak, P.: How Nature Works: The Science of Self-Organized Criticality. Reprint edn. Springer-Verlag Telos (1999) Google Scholar
  13. 13.
    Bak, P., Tang, C., Weisenfeld, K.: Self-Organized Criticality. Physical Review A 38, 364–374 (1988)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Langton, C.G.: Computation at the edge of chaos: Phase transitions and emergent computation. Physica D: Nonlinear Phenomena 42, 13–37 (1990)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Langton, C.G.: Life at the Edge of Chaos. In: Artificial Life II, Addison-Wesley, Reading (1991)Google Scholar
  16. 16.
    Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters 71, 4083 (1993)CrossRefGoogle Scholar
  17. 17.
    Eldredge, N., Gould, S.J.: Punctuated Equilibria: An Alternative to Phyletic Gradualism. Freeman Cooper, San Francisco (1972)Google Scholar
  18. 18.
    Newman, M.E.J.: A model of mass extinction. Journal of Theoretical Biology 189, 235–252 (1997)CrossRefGoogle Scholar
  19. 19.
    de Carvalho, J.X., Prado, C.P.C.: Self-Organized Criticality in the Olami-Feder-Christensen Model. Physical Review Letters 84, 4006 (2000)CrossRefGoogle Scholar
  20. 20.
    Sornette, D., Johansen, A., Dornic, I.: Mapping Self-Organized Criticality onto Criticality. Journal de Physique I 5, 325–335 (1995)CrossRefGoogle Scholar
  21. 21.
    Kinouchi, O., Prado, C.P.C.: Robustness of scale invariance in models with self-organized criticality. Physical Review E 59, 4964 (1999)CrossRefGoogle Scholar
  22. 22.
    Alvarez, L.W., Alvarez, W., Asaro, F., Michel, H.V.: Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science 208, 1095 (1980)CrossRefGoogle Scholar
  23. 23.
    Kornfield, I., Smith, P.F.: African Cichild Fishes: Model Systems for Evolutionary Biology. Annual Review of Ecology and Systematics 31, 163–196 (2000)CrossRefGoogle Scholar
  24. 24.
    Sturmbauer, C., Meyer, A.: Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 358, 578–581 (1992)CrossRefGoogle Scholar
  25. 25.
    Hewitt, G.M.: Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions: Biological Sciences 359, 183–195 (2004)CrossRefGoogle Scholar
  26. 26.
    Butlin, R.K., Walton, C., Monk, K.A., Bridle, J.R.: Biogeography of Sulawesi grasshoppers, genus Chitaura, using DNA sequence data. In: Biogeography and geological evolution of Southeast Asia, pp. 355–359. Backhuys Publishers, Leiden, The Netherlands (1998)Google Scholar
  27. 27.
    Cowling, S.A., Maslin, M.A., Sykes, M.T.: Paleovegetation Simulations of Lowland Amazonia and Implications for Neotropical Allopatry and Speciation. Quaternary Research 55, 140–149 (2001)CrossRefGoogle Scholar
  28. 28.
    Bennett, K.D.: Continuing the debate on the role of Quaternary environmental change for macroevolution. Philosophical Transactions: Biological Sciences 359, 295–303 (2004)CrossRefGoogle Scholar
  29. 29.
    Coope, G.R.: Several million years of stability among insect species because of, or in spite of, Ice Age climatic instability? Philosophical Transactions: Biological Sciences 359, 209–214 (2004)CrossRefGoogle Scholar
  30. 30.
    Gavrilets, S., Vose, A.: Dynamic patterns of adaptive radiation. Proceedings of the National Academy of Sciences USA 102, 18040–18045 (2005)CrossRefGoogle Scholar
  31. 31.
    Paperin, G., Green, D.G., Dorin, A.: Fitness Landscapes in Individual-Based Simulation Models of Adaptive Radiation. In: CMLS 2007. 2007 International Symposium on Computational Models for Life Science, Gold Coast, Australia (2007)Google Scholar
  32. 32.
    Russell, P.J.: Fundamentals of genetics. HarperCollinsCollege Publishers, New York (1994)Google Scholar
  33. 33.
    Green, D.G.: Simulated effects of fire, dispersal and spatial pattern on competition within forest mosaics. Plant Ecology 82, 139–153 (1989)CrossRefGoogle Scholar
  34. 34.
    Barton, N.H., Hewitt, G.M.: Analysis of hybrid zones. Annual Review of Ecology and Systematics 16, 113–148 (1985)CrossRefGoogle Scholar
  35. 35.
    Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.-H., Weiner, J., Wiegand, T., DeAngelis, D.L.: Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology. Science 310, 987–991 (2005)CrossRefGoogle Scholar
  36. 36.
    Purvis, A., Hector, A.: Getting the measure of biodiversity. Nature 405, 212–219 (2000)CrossRefGoogle Scholar
  37. 37.
    Rojas, M.G.S.: Measures of diversity: a comparison of spatial patterns in a marine fouling community. Marine Ecology, vol. Graduate Thesis. Göteborg University, Göteborg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Greg Paperin
    • 1
  • David Green
    • 1
  • Suzanne Sadedin
    • 1
  • Tania Leishman
    • 1
  1. 1.Monash University, Faculty of Information Technology, Clayton Campus, Bldg. 63, Wellington Rd, Clayton, 3800 VicAustralia

Personalised recommendations