Continuity of Fuzzy Approximate Reasoning and Its Application to Optimization

  • Takashi Mitsuishi
  • Yasunari Shidama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4830)

Abstract

This paper describes a mathematical framework for studying a nonlinear feedback control. The fuzzy control discussed here is the nonlinear feedback control in which the feedback laws are determined by IF-THEN type fuzzy production rules through approximate reasoning introduced by Nakamori. To prove existence of optimal control, we applied compactness of a set of membership functions in L 2 space and continuity of the approximate reasoning, and prepared some propositions concerning approximate reasoning of Nakamori model. By considering fuzzy optimal control problems as problems of finding the minimum (maximum) value of the integral cost (benefit) function on an appropriate set of membership functions, the existence of fuzzy optimal control is shown.

Keywords

Fuzzy control Nakamori model Optimization Functional analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadeh, L.A.: Fuzzy algorithms. Information and Control 12, 94–102 (1968)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. Proc. IEE 121 12, 1585–1588 (1974)Google Scholar
  3. 3.
    Tanaka, K., Taniguchi, T., Wang, H.O.: Robust and optimal fuzzy control: A linear matrix inequality approach. In: 1999 International Federation of Automatic Control World Congress, pp. 213–218 (1999)Google Scholar
  4. 4.
    Shidama, Y., Yang, Y., Eguchi, M., Yamaura, H.: The compactness of a set of membership functions and its application to fuzzy optimal control. The Japan Society for Industrial and Applied Mathematics 1, 1–13 (1996)Google Scholar
  5. 5.
    Mitsuishi, T., Kawabe, J., Shidama, Y.: Continuity of Fuzzy Controller. Mechanized Mathematics and Its Applications 1(1), 31–38 (2000)MathSciNetGoogle Scholar
  6. 6.
    Mitsuishi, T., Shidama, Y.: Minimization of Quadratic Performance Function in T-S Fuzzy Model. In: Proc. International Conference on Fuzzy Systems (FUZZ-IEEE2002), pp. 75–79 (2002)Google Scholar
  7. 7.
    Mitsuishi, T., Bancerek, G.: Lattice of Fuzzy Sets. Journal of Formalized Mathematics 11(4), 393–398 (2003)Google Scholar
  8. 8.
    Mitsuishi, T., Shidama, Y.: Continuity of Product-Sum-Gravity Method on L 2 Space Using Fuzzy Number for Premise Variable. In: Proc. 2007 9th International Symposium on Signal Processing and its Applications (2007) CD-ROMGoogle Scholar
  9. 9.
    Mitsuishi, T., Kawabe, J., Wasaki, K., Shidama, Y.: Optimization of Fuzzy Feedback Control Determined by Product-Sum-Gravity Method. Journal of Nonlinear and Convex Analysis 1(2), 201–211 (2000)MATHMathSciNetGoogle Scholar
  10. 10.
    Nakamori, Y., Ryoke, M.: Identification of fuzzy prediction models through hyperellipsoidal clustering. IEEE Transactions on Systems, Man and Cybernetics SMC-24(8), 1153–1173 (1994)CrossRefGoogle Scholar
  11. 11.
    Mitsuishi, T., Wasaki, K., Kawabe, J., Kawamoto, N.P., Shidama, Y.: Fuzzy optimal control in L 2 space. In: Proc. 7th IFAC Symposium Artificial Intelligence in Real-Time Control, pp. 173–177 (1998)Google Scholar
  12. 12.
    Mitsuishi, T., Kawabe, J., Wasaki, K., Kawamoto, N.P., Shidama, Y.: Membership functions in L 2 Space and its Applications to Fuzzy Optimal Control. In: Proc. IEEE International Conference on Systems, Man and Cybernetics, vol. III, pp. 51–55 (1999)Google Scholar
  13. 13.
    Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, New York (1982)MATHGoogle Scholar
  14. 14.
    Dunford, N., Schwartz, J.T.: Linear Operators Part I: General Theory. John Wiley & Sons, New York (1988)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Takashi Mitsuishi
    • 1
  • Yasunari Shidama
    • 2
  1. 1.University of Marketing and Distribution Sciences, Kobe 651-2188Japan
  2. 2.Shinshu University, Nagano 380-8553Japan

Personalised recommendations