Advertisement

A Genetic Programming Approach to Extraction of Glycan Motifs Using Tree Structured Patterns

  • Masatoshi Nagamine
  • Tetsuhiro Miyahara
  • Tetsuji Kuboyama
  • Hiroaki Ueda
  • Kenichi Takahashi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4830)

Abstract

We propose a genetic programming approach to extraction of glycan motifs by using tag tree patterns, which are tree structured patterns with structured variables. A structured variable in a tag tree pattern can be substituted by an arbitrary tree. Our experiments show that we have obtained tag tree patterns as the best individuals including similar substructures of glycan motifs obtained by the previous works.

Keywords

Term Tree Edge Label Vertex Label Tree Structure Data Variable Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann, San Francisco (1998)zbMATHGoogle Scholar
  2. 2.
    Doubet, S., Albersheim, P.: Clycobiology. Data Mining and Knowledge Discovery 2(6), 505 (1992)Google Scholar
  3. 3.
    Yao, X. (ed.): Evolutionary Computation: Theory and Applications. World Scientific, Singapore (1999)Google Scholar
  4. 4.
    Hashimoto, K., Goto, S., Kawano, S., Aoki-Kinoshita, K.F., Ueda, N., Hamajima, M., Kawasaki, T., Kanehisa, M.: KEGG as a glycome informatics resource. Glycobiology 16, 63R–70R (2006)CrossRefGoogle Scholar
  5. 5.
    Hizukuri, Y., Yamanishi, Y., Nakamura, O., Yagi, F., Goto, S., Kanehisa, M.: Extraction of leukemia specific glycan motifs in humans by computational glycomics. Carbohydrate Research 340, 2270–2278 (2005)CrossRefGoogle Scholar
  6. 6.
    Inata, K., Miyahara, T., Ueda, H., Takahashi, K.: Evolution of characteristic tree structured patterns from semistructured documents. In: Sattar, A., Kang, B.H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1201–1207. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  8. 8.
    Kuboyama, T., Hirata, K., Aoki-Kinoshita, K.F., Kashima, H., Yasuda, H.: A gram distribution kernel applied to glycan classification and motifextraction. Genome Informatics 17(2), 25–34 (2006)Google Scholar
  9. 9.
    Miyahara, T., Suzuki, Y., Shoudai, T., Uchida, T., Takahashi, K., Ueda, H.: Discovery of frequent tag tree patterns in semistructured web documents. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 341–355. Springer, Heidelberg (2002)Google Scholar
  10. 10.
    Suzuki, Y., Akanuma, R., Shoudai, T., Miyahara, T., Uchida, T.: Polynomial time inductive inference of ordered tree patterns with internal structured variables from positive data. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 169–184. Springer, Heidelberg (2002)Google Scholar
  11. 11.
    Tan, K.C., Lim, M.H., Yao, X., L. (eds.): Recent Advances in Simulated Evolution and Learning. World Scientific, Singapore (2004)zbMATHGoogle Scholar
  12. 12.
    Watanabe, A., Miyahara, T., Takahashi, K., Ueda, H.: Application of genetic programming to discovery of characteristic tree structured patterns (in Japanese). IEICE Technical Report 101(502), 41–48 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Masatoshi Nagamine
    • 1
  • Tetsuhiro Miyahara
    • 1
  • Tetsuji Kuboyama
    • 2
  • Hiroaki Ueda
    • 1
  • Kenichi Takahashi
    • 1
  1. 1.Graduate School of Information Sciences, Hiroshima City University, Hiroshima 731-3194Japan
  2. 2.Center for Collaborative Research, The University of Tokyo, Tokyo 153-8505Japan

Personalised recommendations