Advertisement

Bounded CCA2-Secure Encryption

  • Ronald Cramer
  • Goichiro Hanaoka
  • Dennis Hofheinz
  • Hideki Imai
  • Eike Kiltz
  • Rafael Pass
  • Abhi Shelat
  • Vinod Vaikuntanathan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4833)

Abstract

Whereas encryption schemes withstanding passive chosen-plaintext attacks (CPA) can be constructed based on a variety of computational assumptions, only a few assumptions are known to imply the existence of encryption schemes withstanding adaptive chosen-ciphertext attacks (CCA2). Towards addressing this asymmetry, we consider a weakening of the CCA2 model — bounded CCA2-security — wherein security needs only hold against adversaries that make an a-priori bounded number of queries to the decryption oracle. Regarding this notion we show (without any further assumptions):

  • For any polynomial q, a simple black-box construction of q-bounded IND-CCA2-secure encryption schemes, from any IND-CPA-secure encryption scheme. When instantiated with the Decisional Diffie-Hellman (DDH) assumption, this construction additionally yields encryption schemes with very short ciphertexts.

  • For any polynomial q, a (non-black box) construction of q-bounded NM-CCA2-secure encryption schemes, from any IND-CPA-secure encryption scheme. Bounded-CCA2 non-malleability is the strongest notion of security yet known to be achievable assuming only the existence of IND-CPA secure encryption schemes.

Finally, we show that non-malleability and indistinguishability are not equivalent under bounded-CCA2 attacks (in contrast to general CCA2 attacks).

Keywords

Encryption Scheme Challenge Ciphertext Decryption Oracle Semantic Security Decryption Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Cramer, R., Hofheinz, D., Kiltz, E.: A note on bounded chosen ciphertext security from black-box semantical security. Cryptology ePrint Archive, Report 2006/391 (2006), http://eprint.iacr.org/
  6. 6.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on Computing 30(2), 391–437 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Erdös, P., Frankel, P., Furedi, Z.: Families of finite sets in which no set is covered by the union of r others. Israeli Journal of Mathematics 51, 79–89 (1985)zbMATHGoogle Scholar
  12. 12.
    Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 434–455. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge, UK (2004)zbMATHGoogle Scholar
  14. 14.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hanaoka, G., Imai, H.: A generic construction of CCA-secure cryptosystems without NIZKP for a bounded number of decryption queries. Cryptology ePrint Archive, Report, 2006/408 (2006), http://eprint.iacr.org/
  16. 16.
    Heng, S.-H., Kurosawa, K.: k-resilient identity-based encryption in the standard model. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 67–80. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting problems without computational assumptions. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)Google Scholar
  18. 18.
    Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Lamport, L.: Constructing digital signatures from a one-way function. Technical Report CSL-98, SRI International (October 1979)Google Scholar
  20. 20.
    Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under general assumptions. Journal of Cryptology 19(3), 359–377 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: STOC 1989, pp. 33–43. ACM Press, New York (1989)CrossRefGoogle Scholar
  22. 22.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC 1990, ACM Press, New York (1990)Google Scholar
  23. 23.
    Pass, R., Shelat, A., Vaikuntanathan, V.: Bounded-CCA secure non-malleable encryption. MIT CSAIL Technical Report TR-2006-081 (December 2006)Google Scholar
  24. 24.
    Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryption scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Phan, D.H., Pointcheval, D.: About the security of ciphers (semantic security and pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  27. 27.
    Rompel, J.: One-way Functions are necessary and sufficient for secure signatures. In: STOC 1990, pp. 387–394Google Scholar
  28. 28.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS  1999, pp. 543–553. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ronald Cramer
    • 1
    • 2
  • Goichiro Hanaoka
    • 3
  • Dennis Hofheinz
    • 1
  • Hideki Imai
    • 3
    • 4
  • Eike Kiltz
    • 1
  • Rafael Pass
    • 5
  • Abhi Shelat
    • 6
  • Vinod Vaikuntanathan
    • 7
  1. 1.Centrum voor Wiskunde en Informatica (CWI), Amsterdam 
  2. 2.Leiden University 
  3. 3.National Institute of Advanced Industrial Science and Technology, Tokyo 
  4. 4.Chuo University 
  5. 5.Cornell University 
  6. 6.University of Virginia 
  7. 7.Massachusetts Institute of Technology 

Personalised recommendations