Anonymous Quantum Communication

  • Gilles Brassard
  • Anne Broadbent
  • Joseph Fitzsimons
  • Sébastien Gambs
  • Alain Tapp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4833)


We present the first protocol for the anonymous transmission of a quantum state that is information-theoretically secure against an active adversary, without any assumption on the number of corrupt participants. The anonymity of the sender and receiver, as well as the privacy of the quantum state, are perfectly protected except with exponentially small probability. Even though a single corrupt participant can cause the protocol to abort, the quantum state can only be destroyed with exponentially small probability: if the protocol succeeds, the state is transferred to the receiver and otherwise it remains in the hands of the sender (provided the receiver is honest).


quantum cryptography multiparty computation anonymity dining cryptographers 


  1. [BBC+93]
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters 70, 1895–1899 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [BCG+02]
    Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2002), p. 449. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  3. [BCG+06]
    Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation with (only) a strict honest majority. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 249–260. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  4. [Boy97]
    Boyan, J.: The Anonymizer: protecting user privacy on the Web. Computer-Mediated Communication Magazine 4(9) (1997)Google Scholar
  5. [Boy02]
    Boykin, P.O.: Information security and quantum mechanics: security of quantum protocols. PhD thesis, University of California, Los Angeles (2002)Google Scholar
  6. [BŠ07]
    Bouda, J., Šprojcar, J.: Anonymous transmission of quantum information. In: Proceedings of the First International Conference on Quantum, Nano, and Micro Technologies (ICQNM 2007) (2007)Google Scholar
  7. [BT07]
    Broadbent, A., Tapp, A.: Information-theoretic security without an honest majority. In: ASIACRYPT 2007. LNCS, vol. 4833, pp. 410–426. Springer, Heidelberg (2007)Google Scholar
  8. [Cha81]
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 24, 84–88 (1981)CrossRefGoogle Scholar
  9. [Cha88]
    Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1, 65–75 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [CW05]
    Christandl, M., Wehner, S.: Quantum anonymous transmissions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 217–235. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. [GGK+99]
    Gabber, E., Gibbons, P.B., Kristol, D.M., Matias, Y., Mayer, A.J.: Consistent, yet anonymous, Web access with LPWA. Communications of the ACM 42(2), 42–47 (1999)CrossRefGoogle Scholar
  12. [Gol04]
    Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge University Press, Cambridge (2004)Google Scholar
  13. [RB89]
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the twenty-first annual ACM Symposium on Theory of Computing (STOC), pp. 73–85. ACM Press, New York (1989)CrossRefGoogle Scholar
  14. [Weh04]
    Wehner, S.: Quantum computation and privacy. Master’s thesis, CWI Amsterdam (2004)Google Scholar
  15. [WZ82]
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gilles Brassard
    • 1
  • Anne Broadbent
    • 1
  • Joseph Fitzsimons
    • 2
  • Sébastien Gambs
    • 1
  • Alain Tapp
    • 1
  1. 1.Université de Montréal, Département d’informatique et de recherche opérationnelle, C.P. 6128, Succ. Centre-Ville, Montréal (Québec), H3C 3J7Canada
  2. 2.University of Oxford, Department of Materials, Parks Road, Oxford, OX1 3PHUnited Kingdom

Personalised recommendations