Along with an increase in the number of mentally ill people, research into all aspects of mental health has increased in recent years. In all disciplines information is the key to success but major problems adversely affect the efficiency and effectiveness that available mental health information is used. These relate to the lack of existing infrastructure to support effective access and information retrieval, and lack of tools to analyze the available information and derive useful knowledge from it. In this paper we explain how the ontology, multi-agent system and data mining technologies can be implemented within the mental health domain to effectively address these issues. The synergy of these frontier technologies may result in an intelligent information infrastructure that provides effective and efficient use of all available information.


mental health research health information systems ontology-based multi-agent systems data mining intelligent information retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lopez, A.D., Murray, C.C.J.L.: The global burden of disease, 1990-2020. Nature Medicine 4, 1241–1243 (1998)CrossRefGoogle Scholar
  2. 2.
    Horvitz-Lennon, M., Kilbourne, A.M., Pincus, H.A.: From silos to bridges: meeting the general health care needs of adults with severe mental illnesses. Health Affairs 25(3), 659–669 (2006)CrossRefGoogle Scholar
  3. 3.
    Anderson, G.F., Frogner, B.K., Johns, R.A., Reinhardt, U.E.: Health care spending and use of information technology in OECD countries. Health Affairs 25(3), 819–831 (2006)CrossRefGoogle Scholar
  4. 4.
    Coye, M.J., Kell, J.: How hospitals confront new technology. Health Affairs 25(1), 163–173 (2006)CrossRefGoogle Scholar
  5. 5.
    Ceusters, W., Martens, P., Dhaen, C., Terzic, B.: LinkFactory: an advanced formal ontology management System. In: Proceedings of Interactive Tools for Knowledge Capture (KCAP 2001) (2001)Google Scholar
  6. 6.
    Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Research 32(1), 267–270 (2004)CrossRefGoogle Scholar
  7. 7.
    Montyne, F.: The importance of formal ontologies: A case study in occupational health. In: Proceedings of the Open Enterprise Solutions: Systems, Experiences, and Organizations (OES-SEO 2001), Luiss Publications (2001)Google Scholar
  8. 8.
    Moreno, A., Isern, D.: A first step towards providing health-care agent-based services to mobile users. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2002), pp. 589–590 (2002)Google Scholar
  9. 9.
    Merelli, E., Culmone, R., Mariani, L.: BioAgent: A mobile agent system for bioscientists. In: Proceedings of The Network Tools and Applications in Biology Workshop Agents in Bioinformatics (NETTAB 02) (2002)Google Scholar
  10. 10.
    Ulieru, M.: Internet-enabled soft computing holarchies for e-Health applications. New Directions in Enhancing the Power of the Internet, pp. 131–166. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Hadzic, M., Chang, E.: Ontology-based Multi-agent systems support human disease study and control. In: Czap, H., Unland, R., Branki, C., Tianfield, H. (eds.) Frontiers in Artificial Intelligence and Applications (special issues on Self-organization and Autonomic Informatics), vol. 135, pp. 129–141. IOS Press, Amsterdam (2005)Google Scholar
  12. 12.
    Zaki, M., Wang, J., Toivonen, J.T.L., Toivonen, H.T.T.: Data mining in bioinformatics: report on BIOKDD 2003. SIGKDD Explorations 5(2), 198–200 (2003)CrossRefGoogle Scholar
  13. 13.
    Hearst, M.A.: Untangling text data mining. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, pp. 3-10 (1999)Google Scholar
  14. 14.
    Shatkay, H., Feldman, R.: Mining the biomedical literature in the genomic era: An Overview. Journal of Computational Biology 10(6), 821–855 (2003)CrossRefGoogle Scholar
  15. 15.
    Piatetsky-Shapiro, G., Tamayo, P.: Microarray data mining: Facing the challenges. SIGKDD Explorations 5(2), 1–6 (2003)CrossRefGoogle Scholar
  16. 16.
    Onkamo, P., Toivonen, H.: A survey of data mining methods for linkage disequilibrium mapping. Human Genomics 2(5), 336–340 (2006)Google Scholar
  17. 17.
    Goble, C.: The grid needs you. Enlist now. In: Proceedings of the International Conference on Cooperative Object Oriented Information Systems, pp. 589–600 (2003)Google Scholar
  18. 18.
    Liu, J., Juo, S.H., Dewan, A., Grunn, A., Tong, X., Brito, M., Park, N., Loth, J.E., Kanyas, K., Lerer, B., Endicott, J., Penchaszadeh, G., Knowles, J.A., Ott, J., Gilliam, T.C., Baron, M.: Evidence for a putative bipolar disorder locus on 2p13-16 and other potential loci on 4q31, 7q34, 8q13, 9q31, 10q21-24, 13q32, 14q21 and 17q11-12. Molecular Psychiatry 8(3), 333–342 (2003)CrossRefGoogle Scholar
  19. 19.
    Smith, D.G., Ebrahim, S., Lewis, S., Hansell, A.L., Palmer, L.J., Burton, P.R.: Genetic epidemiology and public health: hope, hype, and future prospects. The Lancet 366(9495), 1484–1498 (2005)CrossRefGoogle Scholar
  20. 20.
    Craddock, N., Jones, I.: Molecular genetics of bipolar disorder. The British Journal of Psychiatry 178(41), 128–133 (2001)CrossRefGoogle Scholar
  21. 21.
    Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley and Sons, Chichester (2002)Google Scholar
  22. 22.
    Gómez-Pérez, A.: Towards a framework to verify knowledge sharing technology. Expert Systems with Applications 11(4), 519–529 (1996)CrossRefGoogle Scholar
  23. 23.
    Gómez-Pérez, A.: Knowledge sharing and reuse. The Handbook on Applied Expert Systems, 1–36 (1998)Google Scholar
  24. 24.
    Sestito, S., Dillon, T.S.: Automated Knowledge Acquisition. Prentice Hall, Australia, Sydney (1994)zbMATHGoogle Scholar
  25. 25.
    Chen, W.L.: Chemoinformatics: Past, Present, and Future. Journal of Chemical Information and Modelling 46, 2230–2255 (2006)CrossRefGoogle Scholar
  26. 26.
    Patel, K.K., Butler, B., Wells, K.B.: What Is Necessary To Transform The Quality Of Mental Health Care. Health Affairs 25(3), 681–693 (2006)CrossRefGoogle Scholar
  27. 27.
    Protégé: an Ontology and knowledge-based editor, Stanford Medical Informatics, Stanford University, School of Medicine (2006),
  28. 28.
    Australian Government, Department of Health and Ageing Factbook 2006 (accessed February 20, 2007)
  29. 29.
    Garber, A.M.: PERSPECTIVE: To Use Technology Better. Health Affairs, W51–W53 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Maja Hadzic
    • 1
  • Roberta Ann Cowan
    • 1
  1. 1.Curtin University of Technology, Digital Ecosystems and Business Intelligence Institute (DEBII), GPO Box U1987 Perth, Western Australia 6845Australia

Personalised recommendations