Mapping ORM into the SHOIN/OWL Description Logic

Towards a Methodological and Expressive Graphical Notation for Ontology Engineering
  • Mustafa Jarrar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4805)

Abstract

We map ORM into the \(\mathcal{SHOIN}\)/OWL, which is the most common description logic in ontology engineering. As \(\mathcal{SHOIN}\)/OWL is known to be a good compromise between expressiveness and computational complexity, this implies that the ORM constraints mapped in this paper are the constraints that are easier to implement and reason about. Our mappings are implemented as an extension to the DogmaModeler tool, which uses Racer as a background reasoning engine. Furthermore, the expressive, methodological, and graphical capabilities of ORM make it a good candidate for use as a graphical notation for ontology languages. In this way, industrial experts who are not IT savvy will still be able to build and view ontologies without needing to know the logic or reasoning foundations underpinning them.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, D.N.P.: The Description Logic Handbook. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  2. 2.
    Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on uml class diagrams. Artificial Intelligence 168(1), 70–118 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query containment under constraints. In: Proc. of the ACM SIGACT-SIGMOD-SIGART, pp. 149–158 (1998)Google Scholar
  4. 4.
    Calvanese, D., Lenzerini, M., De Giacomo, G.: Identification constraints and functional dependencies in description logics. In:The IJCAI 2001, pp. 155–160 (2001)Google Scholar
  5. 5.
    Bach, D., Meersman, R., Spyns, P., Trog, D.: Mapping owl-dl into orm/ridl (to appear). In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007 Workshops. LNCS, vol. 4805, Springer, Heidelberg (2007)Google Scholar
  6. 6.
    de Troyer, O.: A formalization of the binary object-role model based on logic. Data and Knowledge Engineering 19, 1–37 (1996)MATHCrossRefGoogle Scholar
  7. 7.
    Franconi, E., Ng, G.: The i.com tool for intelligent conceptual modelling. In: 7th Int. WS on Knowledge Representation meets Databases, Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Stoilos, G., Stamou, G., Shearer, S., Horrocks, I., Pan, J., Jarrar, M.: Requirements for further language extensions, d2.5.4. Technical report, KnowledgeWeb-IST-2004-507482 (2006)Google Scholar
  9. 9.
    Halpin, T.: A logical analysis of information systems: static aspects of the data-orientedperspective. PhD thesis, University of Queensland, Brisbane, Australia (1989)Google Scholar
  10. 10.
    Halpin, T.: Information Modeling and Relational Databases. Morgan-Kaufmann, San Francisco (2001)Google Scholar
  11. 11.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\mathcal{SROIQ}\). In: Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (2006)Google Scholar
  12. 12.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Jarrar, M.: Towards Methodological Principles for Ontology Engineering. PhD thesis, Vrije Universiteit Brussel, Brussels, Belgium, May (2005)Google Scholar
  14. 14.
    Jarrar, M.: Towards automated reasoning on orm schemes. In: ER 2007. Proceedings of the 26th International Conference on Conceptual Modeling, Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Jarrar, M.: Towards Effectiveness and Transparency in e-Business Transactions, An Ontology for Customer Complaint Management. In: Idea Group Inc. 8 (2007)Google Scholar
  16. 16.
    Jarrar, M., Eldammagh, M.: Reasoning on orm using racer. Technical report, Vrije Universiteit Brussel, Brussels, Belgium (August 2006)Google Scholar
  17. 17.
    Jarrar, M., Heymans, S.: On pattern-based ontological reasoning. Journal of Artificial Intelligence Tools (2007)Google Scholar
  18. 18.
    Cranefield, P.S., Hart, L., Dutra, M., Baclawski, K., Kokar, M., Smith, J.: Uml for ontology development. Knowl. Eng. Rev. 17(1), 61–64 (2002)CrossRefGoogle Scholar
  19. 19.
    Simmonds, J., Bastarrica, M.C.: A tool for automatic uml model consistency checking. In: Proc of the IEEE/ACM on Automated software engineering, pp. 431–432 (2005)Google Scholar
  20. 20.
    Halpin, T., Curland, M.: Automated verbalization for orm 2. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE. LNCS, vol. 4275, Springer, Heidelberg (2006)Google Scholar
  21. 21.
    ter Hofstede, A., Proper, H., van der Weide, T.: Formal definition of a conceptual language for the description and manipulationof information models. Info Sys. 18(7), 471–495 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mustafa Jarrar
    • 1
  1. 1.Department of Computer Science, University of Cyprus, STARLab, Vrije Universiteit BrusselsBelgium

Personalised recommendations