Advertisement

Application of Small Gain Type Theorems in Logistics of Autonomous Processes

  • Sergey Dashkovskiy
  • Björn Rüffer
  • Fabian Wirth
Conference paper

Abstract

In this paper we consider stability of logistic networks.We give a stability criterion for a general situation and show how it can be applied in special cases. For this purpose two examples are considered.

Keywords

Queue Length Autonomous Control Logistic Network Container Terminal Small Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armbruster D, Marthaler DE, Ringhofer C, Kempf K, Jo T (2006) A continuum model for a re-entrant factory. Operations Research 54(5):933–950CrossRefGoogle Scholar
  2. Dachkovski S, Wirth F, Jagalski T (2005) Autonomous control in shop floor logistics: Analytic models. In: Chryssolouris G, Mourtzis D (eds) Manufacturing, Modelling, Management and Control 2004, Elsevier Science Ltd, Amsterdam, NLGoogle Scholar
  3. Dashkovskiy S, Rüffer B, Wirth F (2005) A small-gain type stability criterion for large scale networks of ISS systems. Proc of 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005, pp 5633–5638Google Scholar
  4. Dashkovskiy S, Rüffer BS, Wirth FR (2006) An ISS Lyapunov function for networks of ISS systems. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS), Kyoto, Japan, pp 77–82Google Scholar
  5. Dashkovskiy S, Rüffer B, Wirth F (2007a) An ISS small-gain theorem for general networks. Mathematics of Control, Signals, and Systems 19:93–122zbMATHCrossRefGoogle Scholar
  6. Dashkovskiy S, Rüffer B, Wirth F (2007b) Numerical verification of local input-to-state stability for large networks. In: Proc. 46th IEEE Conf. Decision and Control, CDC 2007, IEEE, New Orleans, LA, submittedGoogle Scholar
  7. Helbing D, Lämmer S, Witt U, Brenner T (2004) Network-induced oscillatory behavior in material flow networks and irregular business cycles. Physical Review E 70(056118):6 pagesGoogle Scholar
  8. Jiang ZP, Teel AR, Praly L (1994) Small-gain theorem for ISS systems and applications. Math Control Signals Systems 7(2):95–120zbMATHCrossRefMathSciNetGoogle Scholar
  9. Jiang ZP, Mareels IMY, Wang Y (1996) A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica J IFAC 32(8):1211–1215zbMATHCrossRefMathSciNetGoogle Scholar
  10. Scholz-Reiter B, Jagalski T, de Beer C (2007a) Selbststeuerung logistischer Prozesse in Produktionsnetzen. Industrie Management 23(1):19–22Google Scholar
  11. Scholz-Reiter B, Wirth F, Freitag M, Dashkovskiy S, Jagalski T, de Beer C, Rüffer B (2007b) Mathematical models of autonomous logistic processes. In: Hülsmann M, Windt K (eds) Understanding Autonomous Cooperation & Control in Logistics: The Impact on Management, Information and Communication and Material Flow, Springer, BerlinGoogle Scholar
  12. Sontag ED (1989) Smooth stabilization implies coprime factorization. IEEE Trans Automat Control 34(4):435–443zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sergey Dashkovskiy
    • 1
  • Björn Rüffer
    • 1
  • Fabian Wirth
    • 1
  1. 1.Zentrum für TechnomathematikUniversität BremenBremenGermany

Personalised recommendations