Advertisement

Hill Climbing Algorithm for Random Sample Consensus Methods

  • Timo Pylvänäinen
  • Lixin Fan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4841)

Abstract

We propose a modification of RANSAC that performs guided search of the sample space. The sampling is applicable to any of the sample consensus methods, such as MAPSAC or MLESAC. We give simulation results which show that the new method can reduce the number of required iterations to find a good model by orders of magnitude.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldenshluger, A., Zeevi, A.: The hough transform estimator. The Annals of Statistics 32, 1908–1932 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kultanen, P., Xu, L., Oja, E.: Randomized hough transform. In: Proceedings of the International Conference on Pattern Recognition, pp. 631–635 (1990)Google Scholar
  3. 3.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Jiang, T.: Geometric primitive extraction by the combination of tabu search and subpixel accuracy. Journal of Computer Science and Technology 14, 74–80 (1999)CrossRefGoogle Scholar
  5. 5.
    Roth, G., Levine, M.D: Geometric primitive extraction using a genetic algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 901–905 (1994)CrossRefGoogle Scholar
  6. 6.
    Torr, P.H., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 138–156 (2000)CrossRefGoogle Scholar
  7. 7.
    Torr, P.H., Davidson, C.: IMPSAC: Synthesis of importance sampling and random sample consensus. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 354–364 (2003)CrossRefGoogle Scholar
  8. 8.
    Tordoff, B.J., Murray, D.W.: Guided-MLESAC: Faster image transform estimation by using matching priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1523–1535 (2005)CrossRefGoogle Scholar
  9. 9.
    Chum, O., Matas, J.: Matching with PROSAC - progressive sample consensus. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 220–226 (2005)Google Scholar
  10. 10.
    Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) Pattern Recognition. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Myatt, D., Bishop, J., Craddock, R., Nasuto, S., Torr, P.H.: NAPSAC: High noise, high dimensional robust estimation — it’s in the bag. In: Proceedings of the Britsh Machine Vision Conference, pp. 458–467 (2002)Google Scholar
  12. 12.
    Chen, H., Meer, P., Tyler, D.: Robust regression for data with multiple structures. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1069–1075. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  13. 13.
    Subbarao, R., Meer, P.: Beyond RANSAC: User independent robust regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  14. 14.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)Google Scholar
  15. 15.
    Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, pp. 1150–1157 (1999)Google Scholar
  16. 16.
    Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ. USA (1982)zbMATHGoogle Scholar
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Timo Pylvänäinen
    • 1
  • Lixin Fan
    • 1
  1. 1.Nokia Research Center 

Personalised recommendations