Advertisement

Unsupervised Intrusion Detection Using Color Images

  • Grant Cermak
  • Karl Keyzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4842)

Abstract

This paper presents a system to monitor a space and detect intruders. Specifically, the system analyzes color video to determine if an intruder entered the space. The system compares any new items in a video frame to a collection of known items (e.g. pets) in order to allow known items to enter and leave the space. Simple trip-line systems using infrared sensors normally fail when a pet wanders into the path of a sensor. This paper details an adaptation of the mean shift algorithm (described by Comaniciu et al.) in RGB color space to discern between intruders and benign environment changes. A refinement to the histogram bin function used in the tracking algorithm is presented which increases the robustness of the algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comaniciu, D., Ramesh, V., Meer, P.: Real Time Tracking of Non-Rigid Objects Using Mean Shift. In: IEEE Conference on Computer Vision and Pattern Recognition, June 13-15, vol. 2, pp. 142–149 (2000)Google Scholar
  2. 2.
    Swain, M.J., Ballard, D.H.: Indexing Via Color Histograms. In: Third International Conference on Computer Vision, pp. 390–393 (December 1990)Google Scholar
  3. 3.
    Dony, R.D., Wesolkowski, S.: Edge Detection on Color Images Using RGB Vector Angles. In: 1999 Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering, May 9-12, 1999, pp. 687–692 (1999)Google Scholar
  4. 4.
    Ivanov, Y., Stauffer, C., Bobick, A., Grimson, W.E.L.: Video Surveillance of Interactions. In: Second IEEE Workshop on Visual Surveillance 1999, June 26, 1999, pp. 82–89 (1999)Google Scholar
  5. 5.
    Green, B.: Canny Edge Detection Tutorial (2002), [Online]. Available: http://www.pages.drexel.edu/~weg22/can_tut.html
  6. 6.
    Drake, M., Hoffmann, H., Rabbah, R., Amarasinghe, S.: MPEG-2 Decoding in a Stream Programming Language. In: 20th International Parallel and Distributed Processing Symposium 2006, April 25-29, 2006, p. 10 (2006)Google Scholar
  7. 7.
    Lakshmi Ratan, A., Grimson, W.E.L.: Training Templates for Scene Classification Using a Few Examples. In: IEEE Workshop on Content-Based Access of Image and Video Libraries, Conference proceedings, June 20, 1997, pp. 90–97 (1997)Google Scholar
  8. 8.
    Bourbakis, N., Andel, R., Hall, A.: Visual Target Tracking from a Sequence of Images. In: Ninth IEEE International Conference on Tools with Artificial Intelligence 1997, Conference proceedings, November 3-8, 1997, pp. 384–391 (1997)Google Scholar
  9. 9.
    Muguira, M.R., Salton, J.R., Norvick, D.K.: Schwebach, Chile Identification for Metrics in the Chile Industry. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, October 10-12, 2005, vol. 4, pp. 3118–3123 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Grant Cermak
    • 1
  • Karl Keyzer
    • 1
  1. 1.Institute of Technology University of Minnesota, Twin Cities Minneapolis, MN 55455 

Personalised recommendations