A Robust Image Segmentation Model Based on Integrated Square Estimation

  • Shuisheng Xie
  • Jundong Liu
  • Darlene Berryman
  • Edward List
  • Charles Smith
  • Hima Chebrolu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4842)


This paper presents a robust segmentation method based on the integrated squared error or L 2 estimation (L 2 E). Formulated under the Finite Gaussian Mixture (FGM) framework, the new model (FGML2E) has a strong discriminative ability in capturing the major parts of intensity distribution without being affected by outlier structures or heavy noise. Comparisons are made with two popular solutions, the EM and FCM algorithms, and the experimental results clearly show the improvement made by our model.


Gaussian Mixture Model Segmentation Result Outlier Portion Outlier Structure Popular Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Black, M., Rangarajan, A.: The outlier process: Unifying line processes and robust statistics. In: CVPR (1994)Google Scholar
  2. 2.
    Guillemaud, R., Brady, J.M.: Estimating the bias field of MR images. IEEE Trans. on Medical. Imaging 16, 238–251 (1997)CrossRefGoogle Scholar
  3. 3.
    Held, K., et al.: Markov Random Field Segmentation of Brain MR Images. IEEE Trans. on Medical Imaging 16(6) (1997)Google Scholar
  4. 4.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans. on Medical Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar
  5. 5.
    Papademetris, X., Shkarin, P., Staib, L.H., Behar, K.L.: Regional Whole Body Fat Quantification in Mice. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 369–380. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Pohl, K., Bouix, S., Kikinis, R., Grimson, W.: Anatomical guided segmentation with non-stationary tissue class distributions in an expectation-maximization framework. In: ISBI 2004, pp. 81–84 (2004)Google Scholar
  7. 7.
    Scott, D.W.: Parametric Statistical Modeling by Minimum Integrated Square Error. Technometrics 43(3) (2001)Google Scholar
  8. 8.
    Mechelli, A., Price, C.J., Friston, K.J., Ashburner, J.: Voxel-Based Morphometry of the Human Brain: Methods and Applications. Current Medical Imaging Reviews 105–113 (2005)Google Scholar
  9. 9.
    Zhang, Z.: Parameter Estimation Techniques: A Tutorial with Application to Conic fitting. Image and Vision Computing 25, 59–76 (1997)CrossRefGoogle Scholar
  10. 10.
    Titterington, D.M., Makov, U.E., Smith, A.: Statistical Analysis of Finite Mixture Distributions. John Wiley, New York (1985)zbMATHGoogle Scholar
  11. 11.
    Liu, J., Vemuri, B.C., Marroquin, J.L.: Local Frequency Representations for Robust Multimodal Image Registration. IEEE TMI 21(5), 462–469 (2002)Google Scholar
  12. 12.
    Jian, B., Vemuri, B.C.: A Robust Algorithm for Point Set Registration Using Mixture of Gaussians. In: ICCV 2005, pp. 1246–1251 (2005)Google Scholar
  13. 13.
    Wand, M., Jones, M.: Kernel Smoothing. Chapman and Hall, London (1995)zbMATHGoogle Scholar
  14. 14.
    Wells, W.M., et al.: Adaptive segmentation of MRI data. IEEE Trans. Med. Imag. 15, 429–442 (1996)CrossRefGoogle Scholar
  15. 15.
    Wojciechowski, W.: Robust Modeling, doctoral dissertation, RiceUniversity, Houston (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Shuisheng Xie
    • 1
  • Jundong Liu
    • 1
  • Darlene Berryman
    • 2
  • Edward List
    • 2
  • Charles Smith
    • 3
  • Hima Chebrolu
    • 3
  1. 1.School of Elec. Eng. & Comp. Sci. 
  2. 2.School of Human & Consumer Sci., Ohio University, Athens OH 
  3. 3.Department of Neurology, University of Kentucky, Lexington KY 

Personalised recommendations