Advertisement

A Comparison of Fast Level Set-Like Algorithms for Image Segmentation in Fluorescence Microscopy

  • Martin Maška
  • Jan Hubený
  • David Svoboda
  • Michal Kozubek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4842)

Abstract

Image segmentation, one of the fundamental task of image processing, can be accurately solved using the level set framework. However, the computational time demands of the level set methods make them practically useless, especially for segmentation of large three-dimensional images. Many approximations have been introduced in recent years to speed up the computation of the level set methods. Although these algorithms provide favourable results, most of them were not properly tested against ground truth images. In this paper we present a comparison of three methods: the Sparse-Field method [1], Deng and Tsui’s algorithm [2] and Nilsson and Heyden’s algorithm [3]. Our main motivation was to compare these methods on 3D image data acquired using fluorescence microscope, but we suppose that presented results are also valid and applicable to other biomedical images like CT scans, MRI or ultrasound images. We focus on a comparison of the method accuracy, speed and ability to detect several objects located close to each other for both 2D and 3D images. Furthermore, since the input data of our experiments are artificially generated, we are able to compare obtained segmentation results with ground truth images.

Keywords

image segmentation level set method active contours 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Whitaker, R.T.: A level-set approach to 3d reconstruction from range data. Int. J. Comput. Vision 29, 203–231 (1998)CrossRefGoogle Scholar
  2. 2.
    Deng, J., Tsui, H.T.: A fast level set method for segmentation of low contrast noisy biomedical images. Pattern Recognition Letters 23, 161–169 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Nilsson, B., Heyden, A.: A fast algorithm for level set-like active contours. Pattern Recogn. Lett. 24, 1331–1337 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Pratt, W.K.: Digital Image Processing. Wiley, Chichester (1991)zbMATHGoogle Scholar
  5. 5.
    Yoo, T.S.: Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis. AK Peters Ltd (2004)Google Scholar
  6. 6.
    Soille, P.: Morphological Image Analysis, 2nd edn. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 321–331 (1987)Google Scholar
  8. 8.
    Cohen, L.D.: On active contour models and balloons. CVGIP: Image Understanding 53, 211–218 (1991)zbMATHCrossRefGoogle Scholar
  9. 9.
    Caselles, V., Catt, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Inteligence 17, 158–175 (1995)CrossRefGoogle Scholar
  11. 11.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vision 22, 61–79 (1997)zbMATHCrossRefGoogle Scholar
  12. 12.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions of Image Processing 10, 266–277 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulation. Journal of Computational Physics 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods:Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 2nd edn. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  15. 15.
    Sarti, A., Solórzano, C.O.d., Lockett, S., Malladi, R.: A geometric model for 3-D confocal image analysis. IEEE Transaction on Biomedical Engineering 47, 1600–1609 (2000)CrossRefGoogle Scholar
  16. 16.
    Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Solórzano, C.O.d., Malladi, R., Leliévre, S.A., Lockett, S.J.: Segmentation of nuclei and cells using membrane related protein markers. Journal of Microscopy 201, 404–415 (2001)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat’l Academy of Sciences 93, 1591–1595 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Nilsson, B., Heyden, A.: Segmentation of complex cell clusters in microscopic images: Application to bone marrow samples. Cytometry part A 66, 24–31 (2005)CrossRefGoogle Scholar
  20. 20.
    Matula, P., Hubený, J., Kozubek, M.: Fast marching 3d reconstruction of interphase chromosomes. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA. LNCS, vol. 3117, pp. 385–394. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Hubený, J., Matula, P., Matula, P., Kozubek, M.: Improved 3d reconstruction of interphase chromosomes based on nonlinear diffusion filtering. In: In Proceedings of PDE-Based Image Processing and Related Inverse Problem. Mathematics and Vizualization, pp. 163–173. Springer, Heidelberg (2006)Google Scholar
  22. 22.
    Svoboda, D., Kašík, M., Maška, M., Hubený, J., Stejskal, S., Zimmermann, M.: On simulating 3d fluorescent microscope images. In: Computer Analysis of Images and Patterns. LNCS, vol. 4673, pp. 309–316. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Perlin, K.: An image synthesizer. In: SIGGRAPH 1985: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, pp. 287–296. ACM Press, New York (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Maška
    • 1
  • Jan Hubený
    • 1
  • David Svoboda
    • 1
  • Michal Kozubek
    • 1
  1. 1.Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, BrnoCzech Republic

Personalised recommendations