Advertisement

The OpenKnowledge System: An Interaction-Centered Approach to Knowledge Sharing

  • Ronny Siebes
  • Dave Dupplaw
  • Spyros Kotoulas
  • Adrian Perreau de Pinninck
  • Frank van Harmelen
  • David Robertson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4803)

Abstract

The information that is made available through the semantic web will be accessed through complex programs (web-services, sensors, etc.) that may interact in sophisticated ways. Composition guided simply by the specifications of programs’ inputs and outputs is insufficient to obtain reliable aggregate performance - hence the recognised need for process models to specify the interactions required between programs. These interaction models, however, are traditionally viewed as a consequence of service composition rather than as the focal point for facilitating composition. We describe an operational system that uses models of interaction as the focus for knowledge exchange. Our implementation adopts a peer to peer architecture, thus making minimal assumptions about centralisation of knowledge sources, discovery and interaction control.

Keywords

Multiagent System Service Composition Business Process Execution Language Payment Service Team Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akahani, J., Hiramatsu, K., Kogure, K.: Coordinating Heterogeneous Information Services based On Approximate Ontology Translation. In: AA MAS 2002. First International Joint Conference on Autonomous Agents & Multiagent Systems (2002)Google Scholar
  2. 2.
    Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language for web services, version 1.0. Technical report (2004)Google Scholar
  3. 3.
    Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing 6(2), 86–93 (2002)CrossRefGoogle Scholar
  4. 4.
    de Pinninck, A.P., Dupplaw, D., Kotoulas, S., Siebes, R.: The openknowledge kernel. In: Proceedings of the IX CESSE conference, Vienna, Austria (2007)Google Scholar
  5. 5.
    Meredith, G., Weerawarana, S., Christensen, E., Curbera, F.: Web services description language (wsdl) 1.1. Technical report (2001)Google Scholar
  6. 6.
    Foster, I., Kesselman, C.: The grid: blueprint for a new computing infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998)Google Scholar
  7. 7.
    Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J., Vassalos, V., Widom, J.: The TSIMMIS Approach to Mediation: Data Models and Languages. Journal of Intelligent Information Systems 8(2), 117–132 (1997)CrossRefGoogle Scholar
  8. 8.
    Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX-a semantic service-oriented architecture. In: Proceedings IEEE International Conference on Web Services, 2005. ICWS 2005, pp. 321–328. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  9. 9.
    Kotoulas, S., Siebes, R.: Adaptive routing in structured peer-to-peer overlays. In: 3rd Intl. IEEE workshop on Collaborative Service-oriented P2P Information Systems (COPS workshop at WETICE07), Paris, France, IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  10. 10.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 233–246. ACM Press, New York (2002)CrossRefGoogle Scholar
  11. 11.
    Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al.: OWL-S: Semantic Markup for Web Services. W3C Member Submission 22 (2004)Google Scholar
  12. 12.
    Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Importing the Semantic Web in UDDI. Web Services, E-Business and Semantic Web Workshop (2002)Google Scholar
  13. 13.
    Rao, A.S., Georgeff, M.P.: Modeling rational agents with a BDI-architecture. Readings in agent, 317–328 (1997)Google Scholar
  14. 14.
    Robertson, D.: A lightweight coordination calculus for agent systems. In: Leite, J.A., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 183–197. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal on Data Semantics IV, 146–171 (2005)CrossRefGoogle Scholar
  16. 16.
    Siebes, R., Kotoulas, S.: proute: Peer selection using shared term similarity matrices. Web Intelligence and Agent Systems 5(1), 89–107 (2007)Google Scholar
  17. 17.
    Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding Semantics to Web Services Standards. In: Proceedings of the International Conference on Web Services, pp. 395–401 (2003)Google Scholar
  18. 18.
    Stevens, R., Robinson, A., Goble, C.A.: mygrid: Personalised bioinformatics on the information grid. In: proceedings of 11th International Conference on Intelligent Systems in Molecular Biology, Brisbane, Australia (2003)Google Scholar
  19. 19.
    Sycara, K.P., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction and composition of semantic web services. J. Web Sem. 1(1), 27–46 (2003)Google Scholar
  20. 20.
    ten Teije, A., van Harmelen, F., Wielinga, B.: Configuration of web services as parametric designGoogle Scholar
  21. 21.
    Traverso, P., Pistore, M.: Automated Composition of Semantic Web Services into Executable Processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Gerloff, D., Sharman, J., Quang, X., Walton, C., Robertson, D.: Peer to Peer Experimentation in Protein Structure Prediction: an Architecture, Experiment and Initial Results. In: International Workshop on Distributed, High-performance and Grid Computing in Computational Biology, Eilat, Israel (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ronny Siebes
    • 1
  • Dave Dupplaw
    • 2
  • Spyros Kotoulas
    • 1
  • Adrian Perreau de Pinninck
    • 3
  • Frank van Harmelen
    • 1
  • David Robertson
    • 4
  1. 1.Vrije Universiteit Amsterdam 
  2. 2.University of SouthamptonUK
  3. 3.Artificial Intelligence Research Institute (IIIA - CSIC) 
  4. 4.The University of Edinburgh, EdinburghUK

Personalised recommendations