Matching of Hypergraphs — Algorithms, Applications, and Experiments

  • Horst Bunke
  • Peter Dickinson
  • Miro Kraetzl
  • Michel Neuhaus
  • Marc Stettler
Part of the Studies in Computational Intelligence book series (SCI, volume 91)

In this chapter we introduce hypergraphs as a generalisation of graphs for object representation in structural pattern recognition. We also propose extensions of algorithms for the matching and error-tolerant matching of graphs to the case of hypergraphs, including the edit distance of hypergraphs. In a series of experiments, we demonstrate the practical applicability of the proposed hypergraph matching algorithms and show some of the advantages of hypergraphs over conventional graphs.

Keywords

Structural pattern recognition graph graph matching hypergraph hypergraph matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence 18(3):265–298, 2004CrossRefGoogle Scholar
  2. 2.
    C. Berge, Hypergraphs. North-Holland, Amsterdam, 1989MATHGoogle Scholar
  3. 3.
    A. Bretto, H. Cherifi, and D. Aboutajdine. Hypergraph imaging: An overview. Pattern Recognition, 35(3):651–658, 2002MATHCrossRefGoogle Scholar
  4. 4.
    C. Bretto and L. Gillibert. Hypergraph-based image representation. In Proceedings of the 5th International Workshop on Graph-Based Representations in Pattern Recognition, volume 3434, LNCS, pages 1–11. Springer, Berlin Heidelberg New York, 2005Google Scholar
  5. 5.
    A. Wong, S. Lu, and M. Rioux. Recognition and shape synthesis of 3-D objects based on attributed hypergraphs. IEEE Transactions on Pattern Analysis and Machine Intelligence. 11(3):279–290, 1989CrossRefGoogle Scholar
  6. 6.
    D. Demko. Generalization of two hypergraphs. Algorithm of calculation of the greatest sub-hypergraph common to two hypergraphs annotated by semantic information. In Graph Based Representations in Pattern Recognition, Computing. Supplement 12, pages 1–10. Springer, Berlin Heidelberg New York, 1998Google Scholar
  7. 7.
    H. Bunke, P. Dickinson, M. Kraetzl. Theoretical and algorithmic framework for hypergraph matching. In Proceedings of the 13th International Conference on Image Analysis and Processing, volume 3617, LNCS, pages 463–470. Springer, Berlin Heidelberg New York, 2005Google Scholar
  8. 8.
    J. Ullman. An algorithm for subgraph isomorphism. Journal of the Association for Computing Machinery, 23(1):31–42, 1976MATHMathSciNetGoogle Scholar
  9. 9.
    G. Levi. A note on the derivation of maximal common subgraphs of two directed or undirected graphs. Calcolo, 9:341–354, 1972CrossRefMathSciNetGoogle Scholar
  10. 10.
    J. McGregor. Backtrack search algorithm and the maximal common subgraph problem. Software Practice and Experience, 12(1):23–34, 1982MATHCrossRefGoogle Scholar
  11. 11.
    A. Sanfeliu, K. Fu. A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part B), 13(3):353–363, 1983MATHGoogle Scholar
  12. 12.
    B. Messmer, H. Bunke. A new algorithm for error-tolerant subgraph isomorphism detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(5):493–504, 1998CrossRefGoogle Scholar
  13. 13.
    H. Bunke, K. Shearer. A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters, 19(3):255–259, 1998MATHCrossRefGoogle Scholar
  14. 14.
    W. Wallis, P. Shoubridge, M. Kraetzl, D. Ray. Graph distances using graph union. Pattern Recognition Letters, 22(6):701–704, 2001MATHCrossRefGoogle Scholar
  15. 15.
    M.L. Fernandez, G. Valiente. A graph distance metric combining maximum common subgraph and minimum common supergraph. Pattern Recognition Letters, 22(6–7):753–758, 2001MATHCrossRefGoogle Scholar
  16. 16.
    H. Bunke, G. Allermann. Inexact graph matching for structural pattern recognition. Pattern Recognition Letters, 1:245–253, 1983MATHCrossRefGoogle Scholar
  17. 17.
    A. Wong, M. You, S. Chan. An algorithm for graph optimal monomorphism. IEEE Transactions on Systems, Man, and Cybernetics, 20(3):628–638, 1990MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    P. Hart, N. Nilsson, B. Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions of Systems, Science, and Cybernetics, 4(2):100–107, 1968CrossRefGoogle Scholar
  19. 19.
    P. Foggia, C. Sansone, M. Vento. A database of graphs for isomorphism and sub-graph isomorphism benchmarking. In Proceedings of the 3rd International Workshop on Graph-Based Representations in Pattern Recognition, 176–188, 2001Google Scholar
  20. 20.
    M. Kawagoe, A. Tojo. Fingerprint pattern classification. Pattern Recognition, 17:295–303, 1984CrossRefGoogle Scholar
  21. 21.
    K. Karu, A. Jain. Fingerprint classification. Pattern Recognition, 29(3):389–404, 1996CrossRefGoogle Scholar
  22. 22.
    C. Watson, C. Wilson. NIST special database 4, fingerprint database, 1992Google Scholar
  23. 23.
    D. Maltoni, D. Maio, A. Jain, S. Prabhakar. Handbook of Fingerprint Recognition. Springer, Berlin Heidelberg New York, 2003MATHGoogle Scholar
  24. 24.
    M. Neuhaus, H. Bunke. A graph matching based approach to fingerprint classification using directional variance. In Proceedings of 5th International Conference on Audio- and Video-Based Biometric Person Authentication, volume 3546, LNCS, pages 191–200. Springer, Berlin, Heidleberg, New York, 2005Google Scholar
  25. 25.
    M. Neuhaus, K. Riesen, H. Bunke. Fast suboptimal algorithms for the computation of graph edit distance. In Proceedings of the Institute Workshop on Structural, and Syntactical Pattern Recognition, volume 4109, LNCS, pages 163–172. Springer, Berlin Heidelberg New York, 2006Google Scholar
  26. 26.
    K. Riesen, M. Neuhaus, H. Bunke. Bipartite graph matching for computing the edit distance of graphs. In F. Escolano and M. Vento, editors, Graph-Based Representations in Pattern Recognition, LNCS 4538, Springer, 2007, 1–12.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Horst Bunke
    • 1
  • Peter Dickinson
    • 2
  • Miro Kraetzl
    • 2
  • Michel Neuhaus
    • 3
  • Marc Stettler
    • 1
  1. 1.Institute of Computer Science and Applied MathematicsSwitzerland
  2. 2.Defence Science and Technology OrganisationAustralia
  3. 3.Laboratoire d'Informatique LIP6University Pierre et Marie CurieFrance

Personalised recommendations