Movement Coordination in Applied Human-Human and Human-Robot Interaction

  • Anna Schubö
  • Cordula Vesper
  • Mathey Wiesbeck
  • Sonja Stork
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4799)

Abstract

The present paper describes a scenario for examining mechanisms of movement coordination in humans and robots. It is assumed that coordination can best be achieved when behavioral rules that shape movement execution in humans are also considered for human-robot interaction. Investigating and describing human-human interaction in terms of goal-oriented movement coordination is considered an important and necessary step for designing and describing human-robot interaction. In the present scenario, trajectories of hand and finger movements were recorded while two human participants performed a simple construction task either alone or with a partner. Different parameters of reaching and grasping were measured and compared in situations with and without workspace overlap. Results showed a strong impact of task demands on coordination behavior; especially the temporal parameters of movement coordination were affected. Implications for human-robot interaction are discussed.

Keywords

Movement Coordination Joint Action Human-Human Interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenbaum, D.A.: Human Motor Control. Academic Press, San Diego (1991)Google Scholar
  2. 2.
    Thrun, S.: Toward a framework for human-robot interaction. Human-Computer Interaction 19, 9–24 (2004)CrossRefGoogle Scholar
  3. 3.
    Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2003)Google Scholar
  4. 4.
    Stubbs, K., Wettergreen, D., Hinds, P.J.: Autonomy and common ground in human-robot interaction: a field study. IEEE Intelligent Systems, 42–50 (2007)Google Scholar
  5. 5.
    Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11, 1317–1329 (1998)CrossRefGoogle Scholar
  6. 6.
    Wing, A.M., Turton, A., Frazer, C.: Grasp size and accuracy of approach in reaching. Journal of Motor Behavior 18, 245–260 (1986)Google Scholar
  7. 7.
    Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics 61, 89–101 (1989)CrossRefGoogle Scholar
  8. 8.
    Rosenbaum, D.A., Meulenbroek, R.G.J., Vaughan, J.: Planning reaching and grasping movements: Theoretical premises and practical implications. Motor Control 2, 99–115 (2001)Google Scholar
  9. 9.
    Cujpers, R.H., Smeets, J.B.J., Brenner, E.: On the relation between object shape and grasping kinematics. Journal of Neurophysiology 91, 2598–2606 (2004)CrossRefGoogle Scholar
  10. 10.
    Bennis, N., Roby-Brami, A.: Coupling between reaching movement direction and hand orientation for grasping. Brain Research 952, 257–267 (2002)CrossRefGoogle Scholar
  11. 11.
    Rosenbaum, D.A., van Heugten, C.M., Caldwell, G.E.: From cognition to biomechanics and back: The end-state comfort effect and the middle-is-faster effect. Acta. Psychologica 94, 59–85 (1996)CrossRefGoogle Scholar
  12. 12.
    Ansuini, C., Santello, M., Massaccesi, S., Castiello, U.: Effects of end-goal on hand shaping. Journal of Neurophysiology 95, 2456–2465 (2006)CrossRefGoogle Scholar
  13. 13.
    Cohen, R.G., Rosenbaum, D.A.: Where grasps are made reveals how grasps are planned: generation and recall of motor plans. Experimental Brain Research 157, 486–495 (2004)CrossRefGoogle Scholar
  14. 14.
    Knoblich, G., Jordan, J.S.: Action coordination in groups and individuals: learning anticipatory control. Journal of Experimental Psychology: Learning, Memory, and Cognition 29, 1006–1016 (2003)CrossRefGoogle Scholar
  15. 15.
    Sebanz, N., Bekkering, H., Knoblich, G.: Joint action: bodies and minds moving together. Trends in Cognitive Sciences 10, 70–76 (2006)CrossRefGoogle Scholar
  16. 16.
    Meulenbroek, R.G.J., Bosga, J., Hulstijn, M., Miedl, S.: Joint action coordination in transfering objects. Experimental Brain Research 180, 333–343 (2007)CrossRefGoogle Scholar
  17. 17.
    Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London 358, 539–602 (2003)CrossRefGoogle Scholar
  18. 18.
    Egersdörfer, S., Dragoi, D., Monkman, G.J., Füchtmeier, B., Nerlich, M.: Heavy duty robotic precision fracture repositioning. Industrial Robot: An International Journal 31, 488–492 (2004)CrossRefGoogle Scholar
  19. 19.
    Saint-Bauzel, L., Pasqui, V., Gas, B., Zarader, J.: Pathological sit-to-stand predictive models for control of a rehabilitation robotic device. In: Proceedings of the International Symposium on Robot and Human Interactive Communication, pp. 1173–1178 (2007)Google Scholar
  20. 20.
    Camarillo, D.B., Krummel, T.M., Salisbury, J.K.: Robot technology in surgery: past, present, and future. The. American Journal of Surgery 188, 2S–15S (2004)CrossRefGoogle Scholar
  21. 21.
    Schaal, S.: Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences 3, 233–242 (1999)CrossRefGoogle Scholar
  22. 22.
    Breazeal, C., Scassellati, B.: Robots that imitate humans. Trends in Cognitive Sciences 6, 481–487 (2002)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Rizzolatti, G., Fogassi, L., Gallese, V.: Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews 2, 661–670 (2001)CrossRefGoogle Scholar
  25. 25.
    Taylor, R.H.: A perspective on medical robotics. Proceedings of the IEEE 94, 1652–1664 (2006)CrossRefGoogle Scholar
  26. 26.
    Shibata, T.: An overview of human interactive robots for psychological enrichment. Proceedings of the IEEE 92, 1749–1758 (2004)CrossRefGoogle Scholar
  27. 27.
    Kanade, T.: A perspective on medical robotics. In: International Advanced Robotics Program Workshop on Medical Robotics (2004)Google Scholar
  28. 28.
    Breazeal, C.: Social interactions in HRI: the robot view. IEEE Transactions on Systems, Man, and Cybernetics – Part. C: Applications and Reviews 34, 181–186 (2004)CrossRefGoogle Scholar
  29. 29.
    Brennan, S.E., Clark, H.H.: Conceptual pacts and lexical choice in conversation. Journal of Experimental Psychology: Learning, Memory, and Cognition 22, 1482–1493 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Anna Schubö
    • 1
  • Cordula Vesper
    • 1
  • Mathey Wiesbeck
    • 2
  • Sonja Stork
    • 1
  1. 1.Department of Psychology, Experimental Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802 MunichGermany
  2. 2.Institute for Machine Tools and Industrial Management, Technische Universität München, Boltzmannstr. 15, 85747, GarchingGermany

Personalised recommendations