On the Location and p-Median Polytopes

  • Mourad Baïou
  • Francisco Barahona


We revisit classical systems of linear inequalities associated with location problems and with the p-median problem. We present an overview of the cases for which these linear systems define integral polytopes. We also give polynomial time algorithms to recognize these cases.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avella, P., Sassano, A.: On the p-median polytope. Math. Program. 89, 395–411 (2001) MATHCrossRefMathSciNetGoogle Scholar
  2. Baïou, M., Barahona, F.: On the p-median polytope of Y-free graphs Discrete Optim. 5(2), 205–219 (2008) MATHCrossRefMathSciNetGoogle Scholar
  3. Baïou, M., Barahona, F.: On the integrality of the uncapacitated facility location polytope. Technical Report RC24101, IBM Watson Research Center (2006) Google Scholar
  4. Baïou, M., Barahona, F.: On the linear relaxation p-median problem I: oriented graphs. Technical Report, IBM Watson Research Center (2007a) Google Scholar
  5. Baïou, M., Barahona, F.: On the linear relaxation p-median problem II: directed graphs. Technical report, IBM Watson Research Center (2007b) Google Scholar
  6. Byrka, J., Aardal, K.: The approximation gap for the metric facility location problem is not yet closed. Oper. Res. Lett. 35, 379–384 (2007) MATHCrossRefMathSciNetGoogle Scholar
  7. Cánovas, L., Landete, M., Marín, A.: On the facets of the simple plant location packing polytope. Discrete Appl. Math. 124, 27–53 (2002). Workshop on Discrete Optimization (Piscataway, NJ, 1999) MATHCrossRefMathSciNetGoogle Scholar
  8. Caprara, A., Fischetti, M.: \(\{0,\frac{1}{2}\}\) -Chvátal–Gomory cuts. Math. Program. 74, 221–235 (1996) MathSciNetGoogle Scholar
  9. Cho, D.C., Johnson, E.L., Padberg, M., Rao, M.R.: On the uncapacitated plant location problem. I. Valid inequalities and facets. Math. Oper. Res. 8, 579–589 (1983a) MATHCrossRefMathSciNetGoogle Scholar
  10. Cho, D.C., Padberg, M.W., Rao, M.R.: On the uncapacitated plant location problem. II. Facets and lifting theorems. Math. Oper. Res. 8, 590–612 (1983b) MATHCrossRefMathSciNetGoogle Scholar
  11. Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for the uncapacitated facility location problem. SIAM J. Comput. 33, 1–25 (2003) MATHCrossRefMathSciNetGoogle Scholar
  12. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory, Ser. B 18, 138–154 (1975) MATHCrossRefGoogle Scholar
  13. Conforti, M., Rao, M.R.: Structural properties and recognition of restricted and strongly unimodular matrices. Math. Program. 38, 17–27 (1987) MATHCrossRefMathSciNetGoogle Scholar
  14. Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Manage. Sci. 23, 789–810 (1976/77) MathSciNetCrossRefGoogle Scholar
  15. Cornuejols, G., Thizy, J.-M.: Some facets of the simple plant location polytope. Math. Program. 23, 50–74 (1982) MATHCrossRefMathSciNetGoogle Scholar
  16. de Farias, I.R. Jr.: A family of facets for the uncapacitated p-median polytope. Oper. Res. Lett. 28, 161–167 (2001) MATHCrossRefMathSciNetGoogle Scholar
  17. De Simone, C., Mannino, C.: Easy instances of the plant location problem. Technical Report R. 427, IASI, CNR (1996) Google Scholar
  18. Guignard, M.: Fractional vertices, cuts and facets of the simple plant location problem, Math. Program. Stud. (1980), pp. 150–162. Combinatorial optimization Google Scholar
  19. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart & Winston, New York (1976) MATHGoogle Scholar
  20. Mirchandani, P.B., Francis, R.L. (eds.): Discrete Location Theory, Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1990) MATHGoogle Scholar
  21. Müller, R., Schulz, A.S.: Transitive packing: a unifying concept in combinatorial optimization. SIAM J. Optim. 13, 335–367 (2002) (electronic) MATHCrossRefMathSciNetGoogle Scholar
  22. Nestorov, S., Abiteboul, S., Motwani, R.: Extracting schema from semistructured data. In: SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pp. 295–306. ACM Press, New York (1998) CrossRefGoogle Scholar
  23. Shmoys, D.B., Tardos, É., Aardal, K.: Approximation algorithms for facility location problems (extended abstract). In: 29th ACM Symposium on Theory of Computing, pp. 265–274 (1997) Google Scholar
  24. Stauffer, G.: The p-median polytope of Y-free graphs: an application of the matching theory. Technical Report (2007). To appear in Oper. Res. Lett. Google Scholar
  25. Sviridenko, M.: An improved approximation algorithm for the metric uncapacitated facility location problem. In: Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 2337, pp. 240–257. Springer, Berlin (2002) CrossRefGoogle Scholar
  26. Toumani, F.: Personal communication (2002) Google Scholar
  27. Vigneron, A., Gao, L., Golin, M.J., Italiano, G.F., Li, B.: An algorithm for finding a k-median in a directed tree. Inf. Process. Lett. 74, 81–88 (2000) MATHCrossRefMathSciNetGoogle Scholar
  28. Yannakakis, M.: On a class of totally unimodular matrices. Math. Oper. Res. 10, 280–304 (1985) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mourad Baïou
    • 1
  • Francisco Barahona
    • 2
  1. 1.CNRS, LIMOS Complexe scientifique des CezeauxCUST – Campus des CezeauxAubière CedexFrance
  2. 2.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations