Liveness Detection of Fingerprint Based on Band-Selective Fourier Spectrum

  • Changlong Jin
  • Hakil Kim
  • Stephen Elliott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4817)


This paper proposes a novel method for fingerprint liveness detection based on band-selective Fourier spectrum. The 2D spectrum of a fingerprint image reflects the distribution and strength in spatial frequencies of ridge lines. The ridge-valley texture of the fingerprint produces a ring pattern around the center in the Fourier spectral image and a harmonic ring pattern in the subsequent ring. Both live and fake fingerprints produce these rings, but with different amplitudes in different spatial frequency bands. Typically, live fingerprints show stronger Fourier spectrum in the ring patterns than the fake. The proposed method classifies the live and the fake fingerprints by analyzing the band-selective Fourier spectral energies in the two ring patterns. The experimental results demonstrate this approach to be a promising technique for making fingerprint recognition systems more robust against fake-finger-based spoofing vulnerabilities.


Fingerprint Liveness detection Band-selective Fourier Spectrum Ridge-valley texture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Uludag, U., Jain, A.K.: Attacks on Biometric Systems: A Case Study in Fingerprints. In: Proc. SPIE-EI 2004, January 18-22, 2004, San Jose, CA, pp. 622–633 (2004)Google Scholar
  2. 2.
    Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: Impact of Artificial Gummy Fingers on Fingerprint Systems. In: Proceedings of SPIE, Optical Security and Counterfeit Deterrence Techniques IV, vol. 4677 (2002)Google Scholar
  3. 3.
    Drahanský, M., Nötzel, R., Funk, W.: Liveness Detection based on Fine Movements of the Fingertip Surface. In: 2006 IEEE Information Assurance Workshop, June 21-23, 2006, pp. 42–47 (2006)Google Scholar
  4. 4.
    van der Putte, T., Keuning, J.: Biometrical fingerprint recognition: don’t get your fingers burned. In: Proceedings of IFIP TC8/WG8.8 Fourth Working Conference on Smart Card Research and Advanced Applications, pp. 289–303. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  5. 5.
    Baldisserra, D., Franco, A., Maio, D., Maltoni, D.: Fake Fingerprint Detection by Odor Analysis. In: ICBA 2006. Proceedings International Conference on Biometric Authentication, Hong Kong (January 2006)Google Scholar
  6. 6.
    Derakhshani, R., Schuckers, S.A.C., Hornak, L.A., O’Gorman, L.: Determination of vitality from a non-invasive biomedical measurement for use in fingerprint scanners. Pattern Recognition 36, 383–396Google Scholar
  7. 7.
    Parthasaradhi, S.T.V., Derakhshani, R., Hornak, L.A., Schuckers, S.A.C.: Time-Series Detection of Perspiration as a Liveness Test in fingerprint Devices. IEEE Trans. on Systems, Man, and Cybernetics - Part C 35(3) (August 2005)Google Scholar
  8. 8.
    Tan, B., Schuckers, S.: Liveness Detection using an Intensity Based Approach in Fingerprint Scanners. In: Proceedings of Biometrics Symposium, Arlington, VA (September 2005)Google Scholar
  9. 9.
    Tan, B., Schuckers, S.: Liveness Detection for Fingerprint Scanners Based on the Statistics of Wavelet Signal Processing. In: Computer Vision and Pattern Recognition Workshop, 17-22 June 2006, p. 26 (2006)Google Scholar
  10. 10.
    Abhyankar, A., Schuckers, S.: Empirical Mode Decomposition Liveness Check in Fingerprint Time Series Captures. In: Computer Vision and Pattern Recognition Workshop, 17-22 June 2006, p. 28 (2006)Google Scholar
  11. 11.
    Antonelli, A., Cappelli, R., Maio, D., Maltoni, D.: Fake Finger Detection by Skin Distortion Analysis. IEEE Transactions on Information Forensics and Security 1(3), 360–373 (2006)CrossRefGoogle Scholar
  12. 12.
    Chen, Y., Jain, A., Dass, S.: Fingerprint Deformation for Spoof Detection. In: Proceedings of Biometrics Symposium, Arlington, VA, pp. 27–28 (September 2005)Google Scholar
  13. 13.
    Moon, Y.S., Chen, J.S., Chan, K.C., So, K., Woo, K.C.: Wavelet based fingerprint liveness detection. Electronics Letters 41(20), 1112–1113 (2005)CrossRefGoogle Scholar
  14. 14.
    Zhan, X., Yin, Y., Sun, Z., Chen, Y.: A method based on continuous spectrum analysis and artificial immune network optimization algorithm for fingerprint image ridge distance estimation. In: Computer and Information Technology, 2005. The Fifth International Conference on, 21-23 September 2005, pp. 728–733 (2005)Google Scholar
  15. 15.
    Daugman, J.: How Iris Recognition Works. In: Proceedings of 2002 International Conference on Image Processing, vol. 1 (2002)Google Scholar
  16. 16.
    Kovács-Vajna, Z.M., Rovatti, R., Frazzoni, M.: Fingerprint ridge distance computation methodologies. Pattern Recognition 33(1), 69–80 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Changlong Jin
    • 1
  • Hakil Kim
    • 1
  • Stephen Elliott
    • 2
  1. 1.Biometrics Engineering Research Center, School of Information and Communication Engineering, INHA UniversityKorea
  2. 2.Biometric Standards Performance and Assurance Laboratory, Purdue University 

Personalised recommendations