Overcoming the Key Challenges in De Novo Protein Design: Enhancing Computational Efficiency and Incorporating True Backbone Flexibility

  • Christodoulos A. Floudas
  • Ho Ki Fung
  • Dimitrios Morikis
  • Martin S. Taylor
  • Li Zhang
Part of the Applied Optimization book series (APOP, volume 102)

Abstract

De novo protein design is initiated with a postulated or known flexible threedimensional protein structure and aims at identifying amino acid sequences compatible with such a structure. The problem was first denoted as the “inverse folding problem” [4, 5] since protein design has intimate links to the well-known protein folding problem [6]. While the protein folding problem aims at determining the single structure for a sequence, the de novo protein design problem exhibits a high level of degeneracy; that is, a large number of sequences are always found to share a common fold, although the sequences will vary with respect to properties such as activity and stability.

Key words

De novo protein design true protein backbone flexibility weighted average forcefield bin variables fold specificity stage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kiepeis, J.L., Floudas, C.A., Morikis, D., Tsokos, C.G., Argyropoulos, E., Spruce, L., Lambris, J.D.: Integrated structural, computational and experimental approach for lead optimization: deisgn of compstatin variants with improved activity. J. Am. Chem. Soc., 125, 8422–8423 (2003)CrossRefGoogle Scholar
  2. 2.
    Klepeis, J.L., Floudas, C.A., Morikis, D., Tsokos, C.G., Lambris, J.D.: Design of peptide analogs with improved activity using a novel de novo protein design approach. Ind. Eng. Chem. Res., 43, 3817–3826 (2004)CrossRefGoogle Scholar
  3. 3.
    Jin, W., Kambara, O., Sasakawa, H., Tamura, A., Takada, S.: De novo design of foldable proteins with smooth folding funnel: automated negative design and experimental verification. Structure, 11, 581–590 (2003)CrossRefGoogle Scholar
  4. 4.
    Drexler, K.E.: Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. USA, 78, 5275–5278 (1981)CrossRefGoogle Scholar
  5. 5.
    Pabo, C.: Molecular technology: designing proteins and peptides. Nature, 301, 200 (1983)CrossRefGoogle Scholar
  6. 6.
    Hardin, C., Pogorelov, T.V., Luthey-Schulten, Z.: Ab initio protein structure prediction. Curr. Opin. Struc. Biol., 12, 176–181 (2002)CrossRefGoogle Scholar
  7. 7.
    Moore, J.C., Arnold, F.H.: Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol., 14, 458–467 (1996)CrossRefGoogle Scholar
  8. 8.
    Voigt, C.A., Mayo, S.L., Arnold, F.H., Wang, Z-G.: Computational method to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. USA, 98, 3778–3783 (2001)CrossRefGoogle Scholar
  9. 9.
    Skandalis, A., Encell, L.P., Loeb, L.A.: Creating novel enzymes by applied molecular evolution. Chem. Biol., 4, 889–898 (1997)CrossRefGoogle Scholar
  10. 10.
    Ponder, J.W., Richards, F.M.: Tertiary templates for proteins. J. Mol. Biol., 193, 775–791 (1987)CrossRefGoogle Scholar
  11. 11.
    Desjarlais, J.R., Handel, T.M.: De novo design of the hydrophobic cores of proteins. Protein Sci., 4, 2006–2018 (1995)Google Scholar
  12. 12.
    Koehl, P., Levitt, M.: De novo protein design I. In search of stability and specificity. J. Mol. Biol., 293, 1161–1181 (1999)CrossRefGoogle Scholar
  13. 13.
    Voigt, C.A., Gordon, D.B., Mayo, S.L.: Trading accuracy for speed: a quantitative comparison of search algorithms in protein sequence design. J. Mol. Biol., 299, 789–803 (2000)CrossRefGoogle Scholar
  14. 14.
    Desjarlais, J.R., Handel, T.M.: Side chain and backbone exibility in protein core design. J. Mol. Biol., 290, 305–318 (1999)CrossRefGoogle Scholar
  15. 15.
    Desmet, J., De Maeyer, M., Hazes, B., Lasters, L: The dead-end elimination theorem and its use in side-chain positioning. Nature, 356, 539–542 (1992)CrossRefGoogle Scholar
  16. 16.
    Dahiyat, B.I., Mayo, S.L.: De novo protein design: fully automated sequence selection. Science, 278, 82–87 (1997)CrossRefGoogle Scholar
  17. 17.
    Tobi, D., Elber, R.: Distance-dependent pair potential for protein folding: results from linear optimization. Proteins: Structure, Function, and Bioinformatics, 41, 40–46 (2000)CrossRefGoogle Scholar
  18. 18.
    Tobi, D., Shafran, G., Linial, N., Elber, R.: On the design and analysis of protein folding potentials. Proteins: Structure, Function, and Bioinformatics, 40, 71–85 (2000)CrossRefGoogle Scholar
  19. 19.
    Loose, C., Kiepeis, J.L., Floudas, C.A.: A new pairwise folding potential based on improved decoy generation and side chain packing. Proteins: Structure, Function, and Bioinformatics, 54, 303–314 (2004)CrossRefGoogle Scholar
  20. 20.
    CPLEX: Using the CPLEX Callable Library. ILOG, Inc. Mountain View, California (1997)Google Scholar
  21. 21.
    Sherali, H.D., Adams, W.P.: A Reformulation Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishing, Boston (1999)MATHGoogle Scholar
  22. 22.
    Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995)MATHGoogle Scholar
  23. 23.
    Kiepeis, J.L., Schafroth, H.D., Westerberg, K.M., Floudas, C.A.: Deterministic global optimization and ab initio approaches for the structure prediction of polypeptides, dynamics of protein folding and proteinprotein interaction. In: Friesner, R.A. (ed) Advances in Chemical Physics. Wiley, New York (2002)Google Scholar
  24. 24.
    Kiepeis, J.L., Floudas, C.A., Morikis, D., Lambris, J.D.: Predicting peptide structures using NMR data and deterministic global optimization. J. Comput. Chem., 20, 1354–1370 (1999)CrossRefGoogle Scholar
  25. 25.
    Kiepeis, J.L., Floudas, C.A.: Ab initio tertiary structure prediction of proteins. J. Global. Optim., 25, 113–140 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Némethy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S., Scheraga, H.A.: Energy parameters in polypeptides. 10. J. Phys. Chem., 96, 6472–6484 (1992)CrossRefGoogle Scholar
  27. 27.
    Floudas, C. A.: Deterministic Global Optimization: Theory, Methods and Applications. Kluwer Academic Publishers, New York (2000)Google Scholar
  28. 28.
    Adjiman, C., Androulakis, I., Floudas, C.A.: A global optimization method, aBB, for general twice-differential constrained NPLs-1. Theoretical advances. Computers Chem. Engng., 22, 1137–1158 (1998)CrossRefGoogle Scholar
  29. 29.
    Adjiman, C., Androulakis, I., Floudas, C.A.: A global optimization method, aBB, for general twice-differentiable constrained NLPs-II. Implementation and computational results. Computers Chem. Engng., 22, 1159–1179 (1998)CrossRefGoogle Scholar
  30. 30.
    Adjiman, C., Androulakis, I., Floudas, C.A.: Global optimization of mixedinteger nonlinear problems. AIChE Journal, 46, 1769–1797 (2000)CrossRefGoogle Scholar
  31. 31.
    Sahu, A., Lambris, J. D.: Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol. Rev., 180, 35–48 (2001)CrossRefGoogle Scholar
  32. 32.
    Sahu, A., Kay, B.K., Lambris, J.D.: Inhibition of human complement by a C3-binding peptide isolated from a phage displayed random peptide library. J. Immunol., 157, 884–891 (1996)Google Scholar
  33. 33.
    Sahu, A., Soulika, A.M., Morikis, D., Spruce, L., Moore, W.T., Lambris, J.D.: Binding kinetics, structure activity relationship and biotransformation of the complement inhibitor compstatin. J. Immunol, 165, 2491–2499 (2000)Google Scholar
  34. 34.
    Morikis, D., Roy, M., Sahu, A., Torganis, A., Jennings, P.A., Tsokos, G.C., Lambris, J.D.: The structural basis of compstatin activity examined by structure-function-based design of peptide analogs and NMR. J. Biol. Chem., 277, 14942–14953 (2002)CrossRefGoogle Scholar
  35. 35.
    Soulika, A.M., Morikis, D., Sarias, M.R., Roy, M., Spruce, L., Sahu, A., Lambris, J.D.: Studies of structure-activity relations of complement inhibitor compstatin. J. Immunology, 170, 1881–1890 (2003)Google Scholar
  36. 36.
    Soulika, A.M., Khan, M.M., Hattori, T., Bowen, F.W., Richardson, B.A., Hack, C.E., Sahu, A., Edmunds, L.H., Lambris, J.D.: Inhibition of heparin/protamine complex-induced complement activation by comsptatin in baboons. Clin. Immunology, 96, 212–221 (2000)CrossRefGoogle Scholar
  37. 37.
    Nilsson, B., Larsson, R., Hong, J., Elgue, G., Ekdahl, K.N., Sahu, A., Lambris, J.D.: Compstatin inhibits complement and cellular activation in whole blood in two models of extracorporeal circulation. Blood, 92, 1661–1667 (1998)Google Scholar
  38. 38.
    Fiane, A.E., Mollnes, T.E., Videm, V., Hovig, T., Hogasen, K., Mellbye, O.J., Spruce, L., Moore, W.T., Sahu, A., Lambris, J.D.: Compstatin, a peptide inhibitor of C3, prolongs survival of ex-vivo perfused pig xenografts. Xenotransplantation, 6, 52–65 (1999)CrossRefGoogle Scholar
  39. 39.
    Mollnes, T.E., Brekke, O.L., Fung, M., Fure, H., Christiansen, D., Bergseth, G., Videm, V., Lappegard, K.T., Kohl, J., Lambris, J.D.: Essential role of the C5a receptor in E coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of in animation. Blood, 100, 1869–1877 (2002)Google Scholar
  40. 40.
    Klegeris, A., Singh, E.A., McGeer, P.L.: Effects of c-reactive protein and pentosan polysulphate on human complement activation. Immunology, 106, 381–388 (2002)CrossRefGoogle Scholar
  41. 41.
    Sahu, A., Morikis, D., Lambris, J.D.: Compstatin, a peptide inhibitor of complement, exhibits species-specific binging to complement component c3. Mol. Immunology, 39, 557–566 (2003)CrossRefGoogle Scholar
  42. 42.
    Gordon, B.B., Horn, G.K., Mayo, S.L., Pierce, N.A.: Exact rotamer optimization for protein design. J. Comput. Chem., 24, 232–243 (2003)CrossRefGoogle Scholar
  43. 43.
    Pierce, N.L., Spriet, J.A., Desmet, J., Mayo, S.L.: Conformational splitting: a more powerful criterion for dead-end elimination. J. Comput. Chem., 21, 999–1009 (2000)CrossRefGoogle Scholar
  44. 44.
    Zou, J.M., Saven, J.G.: Statistical theory of combinatorial libraries of folding proteins: energetic discrimination of a target structure. J. Mol. Bio., 296, 281–294 (2000)CrossRefGoogle Scholar
  45. 45.
    Kuhlman, B., O’Neill, J.W., Kim, D.E., Zhang, K.Y.J., Baker, D.: Accurate computer-based design of a new backbone conformation in the second turn of protein 1. J. Mol. Bio., 315, 471–477 (2002)CrossRefGoogle Scholar
  46. 46.
    Kuhlman, B., Dantae, G., Ireton, G.C., Verani, G., Stoddard, B., Baker, D.: Design of a novel globular protein fold with atomic-level accuracy. Science, 302, 1364–1368 (2003)CrossRefGoogle Scholar
  47. 47.
    Kuhlman, B., Baker, D.: Native Protein Sequences Are Close to Optimal for Their Structures. Proc. Natl. Acad. Sci. USA, 97, 10383–10388 (2000)CrossRefGoogle Scholar
  48. 48.
    Dantas, G., Kuhlman, B., Callender, D., Wong, M., Baker, D.: A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins. J. Mol. Biol., 332, 449–460 (2003)CrossRefGoogle Scholar
  49. 49.
    Watters, A.L., Baker, D.: Searching for folded proteins in vitro and in silico. Eur. J. Biochem., 271, 1615–1622 (2004)CrossRefGoogle Scholar
  50. 50.
    Kuhlman, B., Baker, D.: Exploring folding free energy landscapes using computational protein design. Current Opinion in Structural Biology, 14, 89–95 (2004)CrossRefGoogle Scholar
  51. 51.
    Kortemme, T., Baker, D.: Computational design of protein-protein interactions. Current Opinion in Chemical Biology, 8, 91–97 (2004)CrossRefGoogle Scholar
  52. 52.
    Benson, D.E., Wisz, M.S., Hellinga, H.W.: Rational design of nascent metalloenzymes. Proc. Natl. Acad. Sci. USA, 97, 6292–6297 (2000)CrossRefGoogle Scholar
  53. 53.
    Goldstein, R.F.: Effcient rotamer elimination applied to protein sidechains and related spin glasses. Biophysics Journal, 66, 1335–1340 (1994)CrossRefGoogle Scholar
  54. 54.
    Looger, L.L., Dwyer, M.W., Smith, J.J., Hellinga, H.W.: Computational design of receptor and sensor proteins with novel functions. Nature, 423, 185–190 (2003)CrossRefGoogle Scholar
  55. 55.
    Richards, F.M., Hellinga, H.W.: Optimal sequence selection in proteins of known structure by simulated evolution. Proc. Natl. Acad. Sci. USA, 91, 5803–5807 (1994)CrossRefGoogle Scholar
  56. 56.
    Richards, F.M., Hellinga, H.W.: Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with predefined geometry. J. Mol. Biol., 222, 763–785 (1991)CrossRefGoogle Scholar
  57. 57.
    Richards, F.M., Caradonna, J.P., Hellinga, H.W.: Construction of new ligand binding sites in proteins of known structure. II. Grafting of a buried transition metal binding site into Escherichia coli thioredoxin. J. Mol. Biol., 222, 787–803 (1991)CrossRefGoogle Scholar
  58. 58.
    Yang, W., Jones, L.M., Isley, L., Ye, Y., Lee, H-W., Wilkins, A., Liu, Z.R., Hellinga, H.W., Malchow, R., Ghazi, M., Yang, J.J.: Rational design of a calcium-binding protein. J. Am. Chem. Soc., 125, 6165–6171 (2003)CrossRefGoogle Scholar
  59. 59.
    Kraemer-Pecore, C.M., Wollacott, A.M., Desjarlais, J.R.: Computational protein design. Current Opinion in Chemical Biology, 5, 690–695 (2001)CrossRefGoogle Scholar
  60. 60.
    Kraemer-Pecore, C.M., Lecomte, J.T., Desjarlais, J.R.: A de novo redesign of the ww domain. Protein Science., 12, 2194–2205 (2003)CrossRefGoogle Scholar
  61. 61.
    Lim, W.A., Hodel, A., Sauer, R.T., Richards, F.M.: The crystal structure of a mutant protein with altered but improved hydrophobic core packing. Proc. Natl. Acad. Sci. USA, 91, 423–427 (1994)CrossRefGoogle Scholar
  62. 62.
    Ember, J.A., Johansen, N.L., Hugli, T.E.: Designing synthetic superagonists of c3a anaphylatoxin. Biochemistry, 30, 3603–3612 (1991)CrossRefGoogle Scholar
  63. 63.
    Dahiyat, B.I., Mayo, S.L.: Protein design automation. Protein Science, 5, 895–903 (1996)CrossRefGoogle Scholar
  64. 64.
    Su, A., Mayo, S.L.: Coupling backbone exibility and amino acid sequence selection in protein design. Protein Science, 6, 1701–1707 (1997)Google Scholar
  65. 65.
    Malakauskas, S.M., Mayo, S.L.: Design, structure, and stability of a hyperthermophilic protein variant. Nat. Struct. Biol., 5, 470–475 (1998)CrossRefGoogle Scholar
  66. 66.
    Shimaoka, M., Shifman, J.M., Jing, H., Takagi, L., Mayo, S.L., Springer, T.A.: Computational design of an intergrin I domain stabilized in the open high affinity conformation. Nat. Struct. Biol., 7, 674–678 (2000)CrossRefGoogle Scholar
  67. 67.
    Mooers, B.H.M., Datta, D., Baase, W.A., Zollars, E.S., Mayo, S.L., Matthews, B.W.: Repacking the core of T4 lysozyme by automated design. J. Mol. Biol., 332, 741–756 (2003)CrossRefGoogle Scholar
  68. 68.
    Gillespie, B., Vu, D.M., Shah, P.S., Marshall, S.A., Dyer, R.B., Mayo, S.L., Plaxco, K.W.: NMR and temperature-jump measurements of de novo designed proteins demonstrate rapid folding in the absence of explicit selection for kinetics. J. Mol. Biol., 330, 813–819 (2003)CrossRefGoogle Scholar
  69. 69.
    Zhu, Y., Alonso, D.O., Maki, K., Huang, C.Y., Lahr, S.J., Daggett, V., Roder, H., DeGrado, W.F., Gai, F.: Ultrafast folding of alpha3D: a de novo designed three-helix bundle protein. Proc. Natl. Acad. Sci. USA, 100, 15486–15491 (2003)CrossRefGoogle Scholar
  70. 70.
    Kono, H., Saven, J.G.: Statistical theory for protein combinatorial libraries. Packing interactions, backbone exibility, and the sequence variability of a mainchain structure. J. Mol. Biol., 306, 607–628 (2001)CrossRefGoogle Scholar
  71. 71.
    Park, S., Yang, X., Saven, J.G.: Advances in computational protein design. Current Opinion in Structural Biology, 14, 487–494 (2004)CrossRefGoogle Scholar
  72. 72.
    Pokala, N., Handel, T.M.: Review: protein design-where we were, where we are, where we’re going. Journal of Structural Biology, 134, 269–281 (2001)CrossRefGoogle Scholar
  73. 73.
    Dill, K.A.: Dominant forces in protein folding. Biochemisty, 29, 7133–7155 (1990)CrossRefGoogle Scholar
  74. 74.
    Lee, C.: Predicting protein mutant energetics by self-consistent ensemble optimization. J. Mol. Biol., 236, 918–939 (1994)CrossRefGoogle Scholar
  75. 75.
    Kiepeis, J.L., Floudas, C.A.: Free energy calculations for peptides via deterministic global optimization. J. Chem. Phys., 110, 7491 (1999)CrossRefGoogle Scholar
  76. 76.
    Huber, R., Scholze, H., Paques, E.P., Deisenhofer, J.: Crystal structure analysis and molecular model of human c3a anaphylatoxin. Hoppe-Seylers Z Physiol Chemie, 361, 1389–1399 (1980)Google Scholar
  77. 77.
    Tuffery, P., Etchebest, C., Hazout, S., Lavery, R.: A new approach to the rapid determination of protein side chain conformations. J. Biomol. Struct. Dyn., 8, 1267–1289 (1991)Google Scholar
  78. 78.
    Wilson, C., Mace, J.E., Agard, D.A.: Computational method for the design of enzymes with altered substrate specificity. J. Mol. Biol., 220, 495–506 (1991)CrossRefGoogle Scholar
  79. 79.
    Farinas, E., Regan, L. The de novo design of a rubredoxin-like Fe site. Protein Science, 7, 1939–1946 (1998)Google Scholar
  80. 80.
    O. Prokopyev and H.X. Huang and P.M. Pardalos: Multi-quadratic Binary Programming. University of Florida, Research Report (2004)Google Scholar
  81. 81.
    Oral, M., Kettani, O.: A linearization procedure for quadratic and cubic mixedinteger problems. Operations Research, 40, S109–S116 (1990)MathSciNetGoogle Scholar
  82. 82.
    Oral, M., Kettani, O.: Reformulating nonlinear combinatorial optimization problems for higher computational efficiency. European Journal of Operational Research, 58, 236–249 (1992)MATHCrossRefGoogle Scholar
  83. 83.
    Pierce, N.A., Winfree, E.: Protein design is np-hard. Protein Engineering, 15, 779–782 (2002)CrossRefGoogle Scholar
  84. 84.
    Mallik, B., Katragadda, M., Spruce, L.A., Carafides, C., Tsokos, C.G., Morikis, D., Lambris, J.D.: Design and nmr characterization of active analogues of compstatin containing non-natural amino acids. Journal of Medicinal Chemistry, 48, 274–286 (2005)CrossRefGoogle Scholar
  85. 85.
    Fung, H.K., Rao, S., Floudas, C.A., Prokopyev, O., Pardalos, P.M., Rendl, F.: Computational comparison studies of quadratic assignment like formulations for the in silico sequence selection problem in de novo protein design. J. Comb. Optim., 10, 41–60 (2005)MATHMathSciNetCrossRefGoogle Scholar
  86. 86.
    Saunders, C.T., Baker, D.: Recapitulation of protein family divergence using exible backbone protein design. J. Mol. Biol., 346, 631–644 (2005)CrossRefGoogle Scholar
  87. 87.
    Rajgaria, R., McAllister, S.R., Floudas, C.A.: Development of a novel high resolution calpha-calpha distance dependent force field using a high quality decoy set. Proteins: Structure, Function, and Bioinformatics, accepted for publication (2006)Google Scholar
  88. 88.
    Floudas, C.A.: Research challenges, opportunities and synergism in systems engineering and computational biology. AIChE Journal, 51, 1872–1884 (2005)CrossRefGoogle Scholar
  89. 89.
    Fung, H.K., Taylor, M.S., Floudas, C.A.: Novel formulation for the sequence selection problem in de novo protein design with exible templates. Optim. Methods & Software, in print (2006)Google Scholar
  90. 90.
    Guntert, P., Mumenthaler, C., Wuthrich, K.: Torsion angle dynamics for nmr structure calculation with the new program DYANA. J. Mol. Bio., 273, 283–298 (1997)CrossRefGoogle Scholar
  91. 91.
    Guntert, P.: Automated nmr structure calculation with CYANA. J. Mol. Bio., 278, 353–378 (2004)Google Scholar
  92. 92.
    Ponder, J.: TINKER, software tools for molecular design. 1998. Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine. St. Louis, MO. (1998)Google Scholar
  93. 93.
    Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A 2nd generation force-field for the simulation Of proteins, nucleic-Acids, and organicmolecules. J. Am. Chem. Soc., 117, 5179–5197 (1995)CrossRefGoogle Scholar
  94. 94.
    Janssen, B.J.C., Huizinga, E.G., Raaijmakers, H.C.A., Roos, A., Daha, M.R., Nilsson-Ekdahl, K., Nilsson, B., Gros, P.: Structures of complement component C3 provide insights into the function and evolution of immunity. Nature, 437, 505–511 (2005)CrossRefGoogle Scholar
  95. 95.
    Dwyer, M.A., Looger, L.L., Hellinga, H.W.: Computational design of a biologically active enzyme. Science, 304, 1967–1971 (2004)CrossRefGoogle Scholar
  96. 96.
    Dwyer, M.A., Hellinga, H.W.: Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr. Opin. Struc. Biol., 14, 495–504 (2004)CrossRefGoogle Scholar
  97. 97.
    Swift, J., Wehbi, W.A., Kelly, B.D., Stowell, X.F., Saven, J.G., Dmochowski, I.J.: Design of functional ferritin-like proteins with hydrophobic cavities. J. Am. Chem. Soc., 128, 6611–6619 (2006)CrossRefGoogle Scholar
  98. 98.
    Bunagan, M.R., Yang, X., Saven, J.G., Gai, F.: Ultrafast folding of a computationally designed trp-cage mutant: trp-cage. J. Phys. Chem. B., 110, 3759–3763 (2006)CrossRefGoogle Scholar
  99. 99.
    Cochran, F.V., Wu, S.P., Wang, W., Nanda, V., Saven, J.G., Therien, M.J., DeGrado, W.F.: Computational de novo design and characterization of a fourhelix bundle protein that selectively binds a nonbiological cofactor. J. Am. Chem. Soc., 127, 1346–1347 (2005)CrossRefGoogle Scholar
  100. 100.
    Sood, V.D., Baker, D.: Recapitulation and design of protein binding peptide structures and sequences. J. Mol. Biol., 357, 917–927 (2006)CrossRefGoogle Scholar
  101. 101.
    Korkegian, A., Black, M.E., Baker, D., Stoddard, B.L.: Computational thermostabilization of an enzyme. Science, 308, 857–860 (2005)CrossRefGoogle Scholar
  102. 102.
    Lazar, G.A., Marshall, S.A., Plecs, J.J., Mayo, S.L., Desjarlais, J.R.: Designing proteins for therapeutic applications. Curr. Opin. Struc. Biol., 13, 513–518 (2003)CrossRefGoogle Scholar
  103. 103.
    Shukla, U.J., Marino, H., Huang, P., Mayo, S.L., Love, J.J.: A designed protein interface that blocks fibril formation. J. Am. Chem. Soc., 126, 13914–13915 (2004)CrossRefGoogle Scholar
  104. 104.
    Song, G., Lazar, G.A., Kortemme, T., Shimaoka, M., Desjarlais, J.R., Baker, D., Springer, T.A. Rational design of intercellular adhesion molecule-1 (ICAM-1) variants for antagonizing integrin lymphocyte function-associated antigen-1-dependent adhesion. J. Biol. Chem., 281, 5042–5049 (2006)CrossRefGoogle Scholar
  105. 105.
    Glover, F.: Improved linear integer programming formulations of nonlinear integer problems. Management Science, 22, 455–460 (1975)MathSciNetGoogle Scholar
  106. 106.
    Floudas, C.A., Fung, H.K.: Mathematical modeling and optimization methods for de novo protein design. In: Rigoutsos, I., Stephanopoulos, G. (eds) Systems Biology II. Oxford University, New York, NY (2006)Google Scholar
  107. 107.
    Chan, D.C., Fass, D., Berger, J.M., Kim, P.S.: Core structure of gp41 from the HIV envelope glycoprotein. Cell, 89, 263–273 (1997)CrossRefGoogle Scholar
  108. 108.
    Malashkevich, V.N., Chan, D.C., Chutkowski, C.T., Kim, P.S.: Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc. Natl. Acad. Sci., 95, 9134–9139 (1998)CrossRefGoogle Scholar
  109. 109.
    Baritaki, S., Dittmar, M.T., Spandidos, D.A., Krambovitis, E.: In vitro inhibition of R5 HIV-1 infectivity by X4 V3-derived synthesis peptides. International Journal of Molecular Medicine, 16, 333–336 (2005)Google Scholar
  110. 110.
    Bagnarelli, P., Fiorelli, L., Vecchi, M., Monachetti, A., Menzo, S., Clementi, M.: Analysis of the functional relationship between v3 loop and gpl20 conext with regards to human immunodeficiency virus coreceptor usage using naturally selected sequences and different viral backbones. Virology, 307, 328–340 (2003)CrossRefGoogle Scholar
  111. 111.
    Galanakis, P.A., Spyroulias, G.A., Rizos, A., Samolis, P., Krambovitis, E. Conformational properties of HIV-1 gpl20/v3 immunogenic domains. Current Medicinal Chemistry, 12, 1551–1568 (2005)CrossRefGoogle Scholar
  112. 112.
    Huang, C., Tang, M., Zhang, M., Majeed, S., Montabana, E., Stanfield, R.L., Dimitrov, D.S., Korber, B., Sodroski, J., Wilson, I.A., Wyatt, R., Kwong, P.D.: Structure of a v3-containing HIV-1 gpl20 core. Science, 310, 1025–1028 (2005)CrossRefGoogle Scholar
  113. 113.
    Zolla-Pazner, S.: Identifying epitopes of HIV-1 that induce protective antibodies. Nature Reviews Immunology, 4, 199–210 (2004)CrossRefGoogle Scholar
  114. 114.
    Sia, S.K., Carr, P.A., Cochran, A.G., Malashkevich, V.N., Kim, P.S.: Short constrained peptides that inhibit HIV-1 entry. PNAS, 99, 14664–14669 (2002)CrossRefGoogle Scholar
  115. 115.
    Fung, H.K., Taylor, M.S., Floudas, C.A., Morikis, D., Lambris, J.D.: Redesigning complement 3a based on exible templates from both xray crystallography and molecular dynamics simulation. In preparation (2006)Google Scholar
  116. 116.
    Hoover, D.M., Rajashankar, K.R., Blumenthal, R., Puri, A., Oppenheim, J.J., Chertov, O., Lubkowski, J.: The structure of human β-defensin-2 shows evidence of higher order oligomeration. J. Biol. Chem., 275, 32911–32918 (2000)CrossRefGoogle Scholar
  117. 117.
    García, J.R.C., Florian, J., Schulz, S., Krause, A., Rodriguez-Jiménez, F.J., Forssmann, U., Adermann, K., Kluver, E., Vogelmeier, C., Becker, D., Hedrich, R., Forssmann, W.G., Bals, R.: Identification of a novel, multifunctional β - defensin (human β-defensin 3) with specific antimicrobial activity. Cell and Tissue Research, 306, 257–264 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christodoulos A. Floudas
    • 1
  • Ho Ki Fung
    • 1
  • Dimitrios Morikis
    • 2
  • Martin S. Taylor
    • 3
  • Li Zhang
    • 4
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrinceton
  2. 2.Department of BioengineeringUniversity of CaliforniaRiverside
  3. 3.Johns Hopkins University School of MedicineBaltimore
  4. 4.Department of ChemistryUniversity of CaliforniaRiverside

Personalised recommendations