Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberti, G. Rank-one properties for derivatives of functions with bounded variations. Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 239–274.MATHMathSciNetGoogle Scholar
  2. 2.
    Alberti, G.; Csorniey, M.; Preiss, D. Structure of null-sets in the plane and applications European congress of mathematics, Stockholm, June 27–July 2, 2004. A. Laptev (ed.). European Mathematical Society, Zürich 2005.Google Scholar
  3. 3.
    Ambrosio, G.; Fusco, N.; Pallara, D. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, 2000.Google Scholar
  4. 4.
    Castaing, C.; Valadier, M. Convex analysis and measurable multifunctions. Lecture Notes in Mathematics 580. Springer, Berlin, 1977.MATHGoogle Scholar
  5. 5.
    De Giorgi, E.; Ambrosio, L. Un nuovo funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8) Mat. Appl. 82 (1988), 199–210.MATHMathSciNetGoogle Scholar
  6. 6.
    Preiss, D. Geometry of measures in ℝ n : distribution, rectifiability, and densities. Ann. of Math. 125 (1987), 537–643.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Camillo De Lellis

    There are no affiliations available

    Personalised recommendations