Dynamic Penalty Based GA for Inducing Fuzzy Inference Systems

  • Tomás Arredondo V.
  • Félix Vásquez M.
  • Diego Candel C.
  • Lioubov Dombrovskaia
  • Loreine Agulló
  • Macarena Córdova H.
  • Valeria Latorre-Reyes
  • Felipe Calderón B.
  • Michael Seeger P.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)

Abstract

Fuzzy based models have been used in many areas of research. One issue with these models is that rule bases have the potential for indiscriminant growth. Inference systems with large number of rules can be overspecified, have model comprehension issues and suffer from bad performance. In this research we investigate the use of a genetic algorithm towards the generation of a fuzzy inference system (FIS). We propose using a GA with a dynamic penalty function to manage the rule size of the fuzzy inference system (FIS) while maintaining the exploration of good rules. We apply this method towards the generation of a fuzzy classifier for the search of metabolic pathways. The GA based FIS includes novel mutation and a penalty based fitness scheme which enables the generation of an efficient and compact set of fuzzy rules. Encouraging implementation results are presented for this method as compared with other classification methods. This method should be applicable to a variety of other modelling and classification problems.

Keywords

Fuzzy logic inference system genetic algorithm system modelling 

References

  1. 1.
    GeXpert: Gexpert project website, http://sourceforge.net/projects/gexpert
  2. 2.
    Arredondo, T., Seeger, M., Dombrovskaia, L., Avarias, J., Calderón, F., Candel, D., Muñoz, F., Latorre, V., Agulló, L., Cordova, M., Gomez, L.: Bioinformatics integration framework for metabolic pathway data-mining. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 917–926. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Sun, J., Zeng, A.P.: Identics - identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 5, 112 (2004)CrossRefGoogle Scholar
  5. 5.
    Peña-Reyes, C.A., Sipper, M.: Designing breast cancer diagnostic systems via a hybrid fuzzy-genetic methodology. In: FUZZ-IEEE 1999, vol. I, pp. 135–139. IEEE Press, Piscataway, NJ (1999)Google Scholar
  6. 6.
    Herrera, F., Lozano, M., Verdegay, J.L.: Generating fuzzy rules from examples using genetic algorithms. In: IPMU 1994, pp. 675–680 (1994)Google Scholar
  7. 7.
    Wang, W.J., Yen, T.G., Sun, C.H.: A method of self-generating fuzzy rule base via genetic algorithm. Control Conference, 2004. 5th Asian 3, 1608–1615 (2004)Google Scholar
  8. 8.
    Chain, P.S.G., Denef, V.J., Konstantinidis, K.T., Vergez, L.M., Agulló, L., Reyes, V.L., Hauser, L., Córdova, M., Gómez, L., González, M., Land, M., Lao, V., Larimer, F., LiPuma, J.J., Mahenthiralingam, E., Malfatti, S.A., Marx, C.J., Parnell, J.J., Ramette, A., Richardson, P., Seeger, M., Smith, D., Spilker, T., Sul, W.J., Tsoi, T.V., Ulrich, L.E., Zhulin, I.B., Tiedje, J.M.: Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-mbp genome shaped for versatility. Proc. Natl. Acad. Sci. USA 103, 15280–15287 (2006)CrossRefGoogle Scholar
  9. 9.
    Weka: Waikato environment for knowledge analysis, http://sourceforge.net/projects/weka/
  10. 10.
    Arredondo, T., Freund, W., Muñoz, C., Navarro, N., Quirós, F.: Fuzzy motivations for evolutionary behavior learning by a mobile robot. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 462–471. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Tomás Arredondo V.
    • 1
  • Félix Vásquez M.
    • 2
  • Diego Candel C.
    • 2
  • Lioubov Dombrovskaia
    • 2
  • Loreine Agulló
    • 3
  • Macarena Córdova H.
    • 3
  • Valeria Latorre-Reyes
    • 3
    • 4
  • Felipe Calderón B.
    • 2
  • Michael Seeger P.
    • 3
  1. 1.Departamento de Electrónica 
  2. 2.Departamento de Informática 
  3. 3.Millennium Nucleus EMBA, Departamento de Química, Universidad Técnica Federico Santa María, Av. España 1680, ValparaísoChile
  4. 4.Universidad de Magallanes, Punta ArenasChile

Personalised recommendations