Mixed Data Object Selection Based on Clustering and Border Objects

  • J. Arturo Olvera-López
  • J. Francisco Martínez-Trinidad
  • J. Ariel Carrasco-Ochoa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)


In supervised classification, the object selection or instance selection is an important task, mainly for instance-based classifiers since through this process the time in training and classification stages could be reduced. In this work, we propose a new mixed data object selection method based on clustering and border objects. We carried out an experimental comparison between our method and other object selection methods using some mixed data classifiers.


Supervised Classifiers Object Selection Clustering Mixed Data 


  1. 1.
    Hart, P.E.: The Condensed Nearest Neighbor Rule. IEEE Transactions on Information Theory 14(3), 515–516 (1968)CrossRefGoogle Scholar
  2. 2.
    Wilson, D.L.: Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE Transactions on Systems, Man, and Cybernetics 2(3), 408–421 (1972)zbMATHCrossRefGoogle Scholar
  3. 3.
    Tomek, I.: An Experiment with the Edited Nearest-Neighbor Rule. IEEE Transactions on Systems, Man, and Cybernetics 6(6), 448–452 (1976)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Wilson, D.R., Martínez, T.R.: Reduction Techniques for Instance-Based Learning Algorithms. Machine Learning 38, 257–286 (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Brighton, H., Mellish, C.: Advances in Instance Selection for Instance-Based Learning Algorithms. Data Mining and Knowledge Discovery 6, 153–172 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Leung, Y., Zhang, J.S., Xu, Z.B.: Clustering by scale-space filtering. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 1396–1410 (2000)CrossRefGoogle Scholar
  7. 7.
    Spillmann, B., Neuhaus, M., Bunke, H., Pękalska, E., Duin, R.P.W.: Transforming Strings to Vector Spaces Using Prototype Selection. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 4109, pp. 287–296. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Lumini, A., Nanni, L.: A clustering method for automatic biometric template selection. Pattern Recognition 39, 495–497 (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    García-Serrano, J.R., Martínez-Trinidad, J.F.: Extension to C-means algorithm for the use of similarity functions. In: Żytkow, J.M., Rauch, J. (eds.) Principles of Data Mining and Knowledge Discovery. LNCS (LNAI), vol. 1704, pp. 354–359. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Blake, C., Keogh, E., Merz, C.J.: UCI repository of machine learning databases. In: Department of Information and Computer Science, University of California, Irvine, CA (1998),
  11. 11.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  12. 12.
    Ruiz-Shulcloper, J., Abidi, M.A.: Logical Combinatorial Pattern Recognition: A Review. In: Pandali, S.G. (ed.) Recent Research Developments in Pattern Recognition. Transword Research Networks, USA, pp. 133–176 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. Arturo Olvera-López
    • 1
  • J. Francisco Martínez-Trinidad
    • 1
  • J. Ariel Carrasco-Ochoa
    • 1
  1. 1.Computer Science Department, National Institute of Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1, Sta. María Tonantzintla, Puebla, CP: 72840Mexico

Personalised recommendations