Computing the Eccentricity Transform of a Polygonal Shape

  • Walter G. Kropatsch
  • Adrian Ion
  • Samuel Peltier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)

Abstract

The eccentricity transform associates to each point of a shape the distance to the point farthest away from it. The transform is defined in any dimension, for open and closed manyfolds, is robust to Salt & Pepper noise, and is quasi-invariant to articulated motion. This paper presents and algorithm to efficiently compute the eccentricity transform of a polygonal shape with or without holes. In particular, based on existing and new properties, we provide an algorithm to decompose a polygon using parallel steps, and use the result to derive the eccentricity value of any point.

Keywords

eccentricity transform distance transform polygon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenfeld, A.: A note on ’geometric transforms’ of digital sets. Pattern Recognition Letters 1(4), 223–225 (1983)CrossRefGoogle Scholar
  2. 2.
    Gorelick, L., Galun, M., Sharon, E., Basri, R., Brandt, A.: Shape representation and classification using the poisson equation. In: CVPR (2), pp. 61–67 (2004)Google Scholar
  3. 3.
    Kropatsch, W.G., Ion, A., Haxhimusa, Y., Flanitzer, T.: The eccentricity transform (of a digital shape). In: 13th International Conference on Discrete Geometry for Computer Imagery, Szeged, Hungary, October 25-27, pp. 437–448. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi Skeletons. Pattern Recognition 28(3), 343–359 (1995)CrossRefGoogle Scholar
  5. 5.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.W.: Shock graphs and shape matching. International Journal of Computer Vision 30, 1–24 (1999)Google Scholar
  6. 6.
    Paragios, N., Chen, Y., Faurgeras, O.: 6. In: Handbook of Mathematical Models in Computer Vision, pp. 97–111. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Soille, P.: Morphological Image Analysis. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)Google Scholar
  9. 9.
    Diestel, R.: Graph Theory. Springer, New York (1997)MATHGoogle Scholar
  10. 10.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)MATHGoogle Scholar
  11. 11.
    Ion, A., Peyré, G., Haxhimusa, Y., Peltier, S., Kropatsch, W.G., Cohen, L.: Shape matching using the geodesic eccentricity transform - a study. In: 31st OAGM/AAPR, Schloss Krumbach, Austria, OCG (May 2007)Google Scholar
  12. 12.
    Maisonneuve, F., Schmitt, M.: An efficient algorithm to compute the hexagonal and dodecagonal propagation function. Acta Stereologica 8(2), 515–520 (1989)Google Scholar
  13. 13.
    Ion, A., Peltier, S., Haxhimusa, Y., Kropatsch, W.G.: Decomposition for efficient eccentricity transform of convex shapes. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007, Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Suri, S.: The all-geodesic-furthest neighbor problem for simple polygons. In: Symposium on Computational Geometry, pp. 64–75 (1987)Google Scholar
  15. 15.
    Khuller, S., Raghavachari, B.: Basic Graph Algorithms. CRC Press (1998)Google Scholar
  16. 16.
    Sethian, J.: Level Sets Methods and Fast Marching Methods, 2nd edn. Cambridge Univ. Press, Cambridge (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Walter G. Kropatsch
    • 1
  • Adrian Ion
    • 1
  • Samuel Peltier
    • 1
  1. 1.Pattern Recognition and Image Processing Group, Faculty of Informatics, Vienna University of TechnologyAustria

Personalised recommendations