Set of Methods for Spontaneous ICH Segmentation and Tracking from CT Head Images

  • Noel Pérez
  • José A. Valdés
  • Miguel A. Guevara
  • Luis A. Rodríguez
  • J. M. Molina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)


Spontaneous intracerebral hemorrhage (ICH) is a common cause of stroke, due to this; the early evolution and quantitative analysis of the ICH is important for the treatment and the course of patient’s recovery. Computer-based diagnosis systems have played an important role in quantitative analysis of medical images aiding medical personnel in selecting the appropriated treatment of diseases. This paper outlines a set of three methods for ICH segmentation and tracking from computer tomography (CT) head images, based on a suitable combination of digital image processing and pattern recognition techniques. Two of these methods are carried out in a semiautomatic way and the other one is performed in a manual way. Methods developed were tested successfully by medical researchers in a representative dataset of CT head images (patient studies).


Intracerebral hemorrhage medical images analysis 3D mathematic morphology segmentation and tracking deformable models 


  1. 1.
    Malkoff, A.E.-M.M.D.: Intracerebral Hemorrhage. The Internet Journal of Emergency and Intensive Care Medicine 5(1) (2001)Google Scholar
  2. 2.
    Cosic, D., Loncaric, S.: Computer System for Quantitative Analysis of ICH from CT head Images. In: 19th Annual International Conference of IEEE Engineering in Medicine and Biology Society, Chicago, USA (1997)Google Scholar
  3. 3.
    Loncaric, S., Dhawan, A.P., Cosic, D.: Quantitative intracerebral brain hemorrhage analysis. In: SPIE Medical Imaging, San Diego, USA (1999)Google Scholar
  4. 4.
    Majcenic, Z., Loncaric, S.: CT Image Labeling Using Simulated Annealing Algorithm. In: IX European Signal Processing Conference, Island of Rhodos, Greece (1998)Google Scholar
  5. 5.
    Liang, J., McInerney, T., Terzopoulos, D.: United Snakes. IEEE Trans. Medical Image Analysis 10, 215–233 (2006)CrossRefGoogle Scholar
  6. 6.
    Falcão, A.X., Udupa, J.K., Miyazawa, F.K.: Ultra-fast user-steered segmentation paradigm: live-wire-on-the-fly. IEEE Trans. Medical Imaging 19(1), 55–62 (2000)CrossRefGoogle Scholar
  7. 7.
    Llerena, Y.: Técnicas para el almacenamiento y recuperación de información gráfica en bases de datos de imágenes. In: CEIS, ISPJAE: Habana, Cuba (2003)Google Scholar
  8. 8.
    Fuertes, J.M.: Recuperación de Imágenes en bases de datos a partir del color y la forma, in E. T. S. de Ingeniería Informática. 1999, Universidad de Granada: Granada. Google Scholar
  9. 9.
    Xu, C., Prince, J.L.: Gradient Vector Flow. A New External Force for Snakes. In: IEEE Conf. on Comp. Vision Patt. Recog. Comp. Soc. Press, Los Alamitos (1997)Google Scholar
  10. 10.
    Xu, C., Prince, J.L.: Snake, shapes, and gradient vector flow. IEEE Trans. Image Processing, 359–369 (1998)Google Scholar
  11. 11.
    Majcenic, Z., Loncaric, S.: CT Image Labeling Using Simulated Annealing Algorithm. In: IX European Signal Processing Conference (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Noel Pérez
    • 1
  • José A. Valdés
    • 1
  • Miguel A. Guevara
    • 1
  • Luis A. Rodríguez
    • 2
  • J. M. Molina
    • 1
  1. 1.Center for Advanced Computer Sciences Technologies, Ciego de Ávila University,Ciego de ÁvilaCuba
  2. 2.Intensive Care Unit, Morón Hospital, Ciego de ÁvilaCuba

Personalised recommendations