Video Analysis Via Nonlinear Dimensionality Reduction

  • Alvaro Pardo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)


In this work we present an application of nonlinear dimensionality reduction techniques for video analysis. We review several methods for dimensionality reduction and then concentrate on the study of Diffusion Maps. First we show how diffusion maps can be applied to video analysis. For that end we study how to select the values of the parameters involved. This is crucial as a bad parameter selection produces misleading results. Using color histograms as features we present several results on how to use diffusion maps for video analysis.


video analysis dimensionality reduction 


  1. 1.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Coifman, R., Lafon, S.: Diffuion maps. Applied and Computational Harmonic Analysis 21, 5–30 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Donoho, D., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high dimensional data. Proc. of National Academy of Sciences 100(10), 5591–5596 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Lafon, S., Keller, Y., Coifman, R.: Data fusion and multicue data matching by diffusion maps. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1784–1797Google Scholar
  5. 5.
    Lafon, S., Lee, A.B.: Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization. IEEE Trans. on Pattern Anal. and Mach. Intell. 28(9), 1393–1403 (2006)CrossRefGoogle Scholar
  6. 6.
    Pardo, A.: Pixel-wise histograms for visual segment description and applications. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 873–882. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Pless, R.: Image spaces and video trajectories: Using isomap to explore video sequences. In: ICCV, pp. 1433–1440 (2003)Google Scholar
  8. 8.
    Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  9. 9.
    Saul, L., Weinberger, K., Sha, F., Ham, J., Lee, D.: Spectral methods for dimensionality reduction. In: Schoelkopf, B., Chapelle, O., Zien, A. (eds.) Semisupervised Learning, MIT Press, Cambridge (2006)Google Scholar
  10. 10.
    Stich, T., Magnor, M.: Keyframe Animation from Video. In: ICIP 2006, pp. 2713–2716 (2006)Google Scholar
  11. 11.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alvaro Pardo
    • 1
  1. 1.DIE, Facultad de Ingeniería y Tecnologías, Universidad Católica del Uruguay 

Personalised recommendations